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ABSTRACT 

 This dissertation focuses on the application of both novel and standard 

chemometric approaches toward societal problems of interest in the areas of forensic 

science and cultural heritage preservation. 

 Microspectrophotometry (MSP), a technique enabling measurements of 

absorption of electromagnetic radiation by microscopic materials in the ultraviolet-visible 

(UV-Vis) region, is widely used by forensic examiners for comparisons of metameric 

textile fibers. These comparisons are often hindered, however, by the raw or normalized 

spectra showing little detail or having few points of comparison. Derivative 

preprocessing can enhance structure in some instances. We have demonstrated through 

the use of multivariate statistics that derivatives are an effective tool for discriminating 

dyed textile fibers. The Fiber Spectra Comparison Tool developed in this work is an 

easy-to-use program designed for comparing multiple fibers simultaneously. 

 Microspectrofluorimetry (MSF) is another useful technique, often used as a 

follow-up method to MSP, for studying fibers that absorb and emit in the UV-Vis region. 

Results found after applying MSP and MSF to the same set of fibers suggest that the 

discrimination power of MSP measurements are slightly higher than those obtained from 

MSF for most colors and fiber-types. In some instances, MSP and MSF provide 

complimentary information which can be taken advantage of by fusing the 

measurements. A low-level (i.e., data level) fusion strategy has been developed which 

provides increased discrimination over the individual techniques.
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The ability to transfer multivariate classification models between laboratories 

having differing instruments has also been investigated in this work. Such efforts could 

save time and resources in forensic analyses and help identify variability between 

examiners. A set of 12 blue acrylic fibers was analyzed by MSP at three academic 

institutions and two certified forensic laboratories. Using a six-step preprocessing 

procedure combined with quadratic discriminant analysis, a transferrable classification 

model was developed which, when tested, produced a classification accuracy of 93.2%. 

This percentage was only slightly lower than the 96.3% accuracy resulting from intra-

laboratory models. This outcome speaks to the consistency of results obtained on the 

same samples in different laboratories. 

Multivariate classification strategies similar to those applied to colored fibers 

have also proven useful for determining the playability of magnetic audio tapes, a popular 

recording medium from the 1950s to the 1990s. Attempting to play degraded tapes during 

the digitization process can cause damage to the playback instrument, and to the tapes 

themselves, often leading to significant downtime for museums and archives. A reliable 

and non-destructive technique for determining the playability of a tape without ever 

actually playing the tape would be beneficial. This work has shown that with attenuated 

total reflectance Fourier transform infrared spectroscopy and machine learning 

algorithms, playability of quarter-inch magnetic audio tapes can be determined with 

greater than 90% accuracy. This finding led to the creation of the Magnetic Audio Tape 

Spectra Analysis program, a user-friendly software program allowing tape custodians to 

visualize data and determine which tapes need to be subjected to restoration processes. 
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CHAPTER 1 

COMPARISON OF MULTIVARIATE PREPROCESSING TECHNIQUES 

FOR THE FORENSIC DISCRIMINATION OF COTTON FIBERS BY 

UV-VISIBLE MICROSPECTROPHOTOMETRY 

 

ABSTRACT 

Color plays a critical role when analyzing natural fibers such as cotton in forensic 

investigations. Ultraviolet-visible microspectrophotometry is a non-destructive technique 

capable of providing objective color measurements on fibers in the form of absorption or 

transmission spectra. Forensic fiber examinations are often hindered, however, by spectra 

with little detail or points of comparison. In this work, samples of reactive, direct, and vat 

dyed cotton fibers were analyzed and spectra were preprocessed using multiple methods 

including baseline correction, normalization, and derivatives. Principal component 

analysis followed by linear discriminant analysis was employed to discriminate the cotton 

samples.  

Direct dyed fibers exhibited almost featureless and low absorbing spectra 

compared to those of reactive and vat dyed fibers. As a result, classification accuracies 

for direct dyed fibers were lower than those calculated for reactive and vat dyed fibers. 

The results of this study show that derivative spectra can significantly enhance structure 

in spectra and are especially useful where spectra only have subtle features such as those 
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exhibited by direct dyed cotton fibers. No single method was best for all classes of fibers 

in the study, and the shapes and intensities of the curves are important when determining 

if derivative calculations are auspicious. 

1. INTRODUCTION 

Cotton is the most abundant fiber in the world with an estimated 25 million tons 

produced annually.1 Much of that amount is used in clothing manufacturing.2 The 

likelihood of recovering cotton fibers from a crime scene is the highest of any fiber type, 

as population studies have shown cotton to be the most common textile fiber found on 

indoor3,4 and outdoor surfaces5, as well as human head hair.6 Certain types of cotton 

fibers, such as indigo dyed and colorless cotton, are found in such abundance that they 

are often considered of little significance for use by forensic analysts. 

Cotton fibers can be categorized based on the method in which they were dyed. 

Fibers dyed using reactive dyes make up the majority of all cotton fibers, and their 

dominance over direct and vat dyed fibers is expected to continue due to the excellent 

wetfastness properties of reactive dyed fibers and the range of brilliant colors which can 

be made using these dyes.7 Although the strength of the covalent bonding between 

reactive dyes and the fiber allows for some superior properties, these forces also make 

removing the dye from the fiber very challenging in cases where one wishes to use 

chromatographic methods of analysis. Direct dyed fibers seemingly account for only 

about 10% of all colored cotton fibers8, and vat dyed fibers share a similar percentage. 

Due to the decreasing popularity of direct and vat dyes, the evidentiary value of fibers 

colored with reactive dyes should significantly increase.  
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Color-based techniques such as thin layer chromatography, Raman spectroscopy, 

and ultraviolet-visible (UV-Vis) microspectrophotometry (MSP) are popular methods 

used to analyze cotton fibers due to the lack of other defining characteristics in most 

natural fibers.9-11 UV-Vis MSP provides a simple, non-destructive method for analyzing 

fibers in situ. The technique is often beneficial for excluding fibers which are 

indistinguishable by other approaches such as comparison light microscopy and 

fluorescent light microscopy.12  

The traditional method used to compare two fibers by UV-Vis MSP might have a 

forensic examiner overlaying representative absorption or transmission spectra and 

comparing them based on the locations and shapes of the peaks. Spectral preprocessing 

techniques can be performed on UV-Vis data to potentially present the data in a more 

useful way. For example, differentiation has been used for many years in analytical 

chemistry for various applications described elsewhere.13,14 The use of derivatives has 

only been used sparingly in forensics, however, for analyzing textile fibers15-18 and fiber 

dyes.19,20  

The aim of this work is to investigate the extent to which the ability to 

discriminate cotton fibers is influenced by various multivariate preprocessing techniques. 

Feature extraction by principal component analysis (PCA) will be used for the purpose of 

reducing complex datasets down to the most significant variables which may not be 

readily visible by examining the spectra. Classification accuracies will be obtained using 

linear discriminant analysis (LDA), a technique which has been used in conjunction with 

UV-Vis MSP in previous studies to discriminate colored textile fibers of cotton, acrylic, 

nylon, and polyester.21,22 
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2. EXPERIMENTAL 

2.1 Materials 

Cotton fibers were collected from fabric obtained from a textile-related 

manufacturer in the southeast United States. Dyeing of the fabric was performed at the 

North Carolina State School of Textiles pilot facility (Raleigh, NC). A total of 121 cotton 

fiber samples known to have been dyed using direct, reactive, or vat dyes were analyzed. 

The fibers were then placed into the groups in Table 1.1 based on their observed color for 

subsequent analysis by UV-Vis MSP. 

Procedures from the Scientific Working Group on Materials Analysis 

(SWGMAT) were followed for fiber analysis by UV-Vis MSP.23 Single fibers were 

positioned on quartz slides (CRAIC Technologies, Altadena, CA, and Esco Products Inc., 

Oak Ridge, NJ) using micro tweezers. Each fiber was mounted using spectral grade 

glycerin (Spectrum Chemical Mfg. Corp., Gardena, CA) and quartz cover slips. 

2.2 Instrumentation 

UV-Vis spectra were obtained using a Quantum Detection Instrument (QDI) 1000 

microspectrophotometer (CRAIC Technologies, San Dimas, CA). Data was processed 

using GRAMS/AI version 700 software (Thermo Galactic, Salem, NH). The 

microspectrophotometer was operated in transmission mode using a xenon light source. 

A 15× collecting objective was used to focus the source light onto an area within the 

diameter of the fiber samples, and replicate spectra were taken along the length of the 

same fiber. Spectra were obtained by taking an average of 100 scans across a spectral 

region of 200-850 nm with a bandwidth of 10 nm. Integration time for the charge coupled 

device (CCD) was approximately 4 ms. 
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2.3 Data Analysis 

Data was saved as comma separated variable (CSV) files and analyzed using 

Fiber Spectrum Explorer, an in-house program written in MATLAB version 8.1 (The 

Mathworks, Inc., Natick, MA). By convention, each dataset explored consisted of a 

matrix with n (number of samples) rows and p (number of variables) columns. For 

discrimination by multivariate analysis, wavelength ranges for all spectra were truncated 

to a wavelength range of 380 to 700 nm. The spectra were then preprocessed using the 

methods described below. 

2.3.1 Baseline Correction 

It is common to have offsetting baselines from spectrum to spectrum in UV-Vis 

measurements. Numerous methods are available for correcting offsetting baselines in 

spectroscopy. Although there are more elaborate techniques for estimating the baseline of 

a spectrum, the method used here involves a simple rescaling of each spectrum by 

assuming the lowest non-zero intensity across a spectrum is in a region where there is 

zero signal. That intensity is then subtracted from all other points in that spectrum. For 

the purpose of discrimination, this method seemingly works at least as well as some 

polynomial fitting algorithms. 

2.3.2 Normalization 

Normalization to unit area is achieved by dividing each observation, X, in the ith 

row and jth column, by the sum of the absolute value of all elements in that row, also 

called 1-norm, as in Equation 1.24  
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𝑋𝑖𝑗,𝑛𝑜𝑟𝑚 =
𝑋𝑖𝑗

∑ |𝑋𝑖𝑗|𝑛
𝑗=1

 (1) 

The result is the total area under the curve of each resulting vector being set equal to one. 

Normalization to unit area is used to account for scaling differences arising from 

variations in concentration, amount, and sample size as well as instrumental intensity 

variations caused by changes in fiber thickness. 

2.3.3 Standard Normal Variate 

The standard normal variate (SNV) transformation is a method of preprocessing 

similar to that of the normalization technique described previously and is calculated using 

Equation 2, where 𝑋𝑖𝑗,𝑆𝑁𝑉 is the SNV transformed point.25 

𝑋𝑖𝑗,𝑆𝑁𝑉 =
𝑋𝑖𝑗 − 𝑋𝑖

𝑠𝑖
 (2) 

The sample mean spectrum, 𝑋𝑖, used in SNV calculations is not used in normalization to 

unit area, however, and can instead be thought of as being set to zero. In addition, 

normalization uses a scaling factor (1-norm for the calculation used in this study) in place 

of the standard deviation, 𝑠𝑖, of the sample-spectrum. 

2.3.4 Autoscale 

Autoscaling is a method of preprocessing which involves subtracting the column 

mean from each element of each column and dividing that result by the standard 

deviation of the column, 𝑠𝑗. 

𝑋𝑖𝑗,𝑎𝑢𝑡𝑜 =
𝑋𝑖𝑗 − 𝑋𝑗

𝑠𝑗
 (3) 
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This results in the variance of all columns being equal to one. Because all values are 

given equal weighting, small variations in the data are emphasized. When using data with 

a low signal to noise ratio, however, noise and signal are treated equally, and this 

approach becomes less useful. 

2.3.5 Derivatives 

First derivatives (FDs) are an effective tool for correcting baseline offsets. By using a 

normalization technique such as a normalization to unit area or SNV following a FD 

calculation, a slope correction can also be gained. FD spectra of data recorded using 

evenly spaced intervals along the x-axis can be obtained by calculating the difference 

between two features, n and n + 1, where y is signal intensity and 𝜆 is wavelength. 

𝜕𝑦

𝜕𝜆
=  

𝑦𝑛+1 − 𝑦𝑛

𝜆𝑛+1 − 𝜆𝑛
 (4) 

The sharpest features in UV-Vis absorbance spectra are caused by noise in the measured 

signal. This results in a decrease in the signal-to-noise ratio when the FD is calculated. 

Noise enhancement by derivative spectroscopy is often dealt with by spectral smoothing 

before differentiation. For all FD spectra in this study, a line was fitted to a 23 point 

moving window using a least-squares approximation.  

A second approach to dealing with the increasing noise amplification that is 

associated with calculating derivatives is to use the gap-segment method. Unlike the FD 

calculations collected by taking the difference of values over two adjacent points, the 

second derivative (SD) calculations were made by calculating the derivative over a 

number of variables (i.e., segments). The user can then define the number of variables 

between those segments (i.e., gaps). A practical method for determining a “good” gap-
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segment combination is to try multiple combinations on one or more datasets, and select 

the one which gives the best results. From this process, a gap size of 31 points and a 

segment size of 35 points were used for all SD calculations in this study. 

2.3.6 Feature extraction and classification 

After preprocessing, all sets of spectra were subjected to PCA. PCA is a technique 

used to reduce the dimensionality of large data sets.26 In PCA, the original correlated 

variables (wavelengths) are reduced to a new set of uncorrelated variables, or principal 

components (PCs). PCs are linear combinations of the original variables and are arranged 

in such a way that the first PC accounts for the largest variation in the data set, and the 

amount of variance captured decreases with each successive PC. Selection of the number 

of relevant PCs to be used in the models was chosen via scree plots which display the 

percent variance captured by each PC. The greatest number of PCs before the captured 

variance begins to level off was selected for use in LDA. 

After the appropriate number of PCs are selected, LDA, a supervised 

classification technique, was used to maximize the separation between groups in the 

reduced PC space. This is carried out by projecting the data into the space of the 

canonical variates. These axes differ from those in PCA in that they account for the 

within-group and between-group variances after the groups are specified by the user. 

Classification accuracies of each PCA-LDA model were determined internally using 

leave-one-out cross-validation. In this cross-validation technique, LDA is performed on 

the data set with one sample omitted thus becoming the training set. An attempt is then 

made to allocate the omitted sample back into the training set. This process is repeated 

for each sample in the data set, and classification accuracies are obtained by assigning 
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each ‘unknown’ spectrum to the group of which the Mahalanobis distance27 is the 

shortest.  

3. RESULTS AND DISCUSSION 

3.1 Comparing preprocessing methods for fiber analysis 

The impact of using multiple forms of preprocessed UV-Vis spectra for fiber 

discrimination with PCA-LDA was investigated. Though there is no hard-and-fast rule 

for classifying cotton fibers based on the class of the dye, the classes themselves may 

have characteristic changes in absorbance (∆A) across each spectrum as calculated using 

Equation 5. Amax and Amin are the respective maximum and minimum absorbance values 

in a spectrum as seen in Figure 1.1. For Gaussian-shaped curves, such as the ones 

encountered in UV-Vis MSP, this calculation can serve as an indicator of the evenness of 

the features across the spectra. 

∆𝐴 = 𝐴𝑚𝑎𝑥 −  𝐴𝑚𝑖𝑛 (5) 

Most direct dyed fibers in this study (80.8%) had values for ∆A between 0.005 

and 0.020. The ∆A values for vat dyed fibers were mainly (85.7%) within a range of 

0.020 and 0.130. Cotton fibers dyed using reactive dyes showed a broad range of ∆A 

values. However, 89.2% of these fibers had a ∆A between 0.020 and 0.456. This suggests 

that the majority of reactive dyed fibers show equal or greater absorption than vat dyed 

fibers. UV-Vis spectra of fibers consistent with this trend are shown in Figure 1.2. 

 Multivariate statistical methods were used to compare each fiber sample to other 

fibers of both the same color and dye class. A group of six yellow fibers dyed using 

reactive dyes was selected to demonstrate the methodology used in this study. The UV-
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Vis absorbance spectra obtained for this group of fibers are shown in Figure 1.3. The 

hues for these fibers were obtained using one to three dyes, the typical range for all fibers 

in this study. From a visual examination of the absorbance spectra of this set of six fibers, 

it was concluded that three of the fibers could easily be discriminated. As seen in Figure 

1.4, the broad peaks in the averaged raw absorbance spectra of the three remaining fibers 

demonstrate the challenge associated with fiber comparisons based on unprocessed 

spectra. It should be noted that none of the samples in this group which appeared to have 

very similar absorbance spectra shared any of the same dyes. 

 After all UV-Vis absorbance spectra had been preprocessed using the techniques 

described in the previous section, PCA was performed to reduce the dimensionality of the 

data. A requirement for LDA calculations is to have more samples than variables. If this 

is not the case, inversion of the within-groups sum of squares and cross-products matrix 

cannot occur. Selection of an appropriate number of PCs to include in the LDA model is 

important for achieving the best separation between classes. When too many PCs are 

included, the resulting classification model may generalize poorly. Overfitting is avoided 

or reduced by using a Scree plot such as the one in Figure 1.5. This plot shows the 

percent variance captured by each PC after performing PCA on FD spectra of the six 

yellow reactive dyed fibers. Four PCs, containing 91.7% of the total variance in the data, 

were chosen as the number used as input for LDA, since the variance appears to be 

relatively flat for all PCs greater than four. 

 Table 1.2 shows the confusion matrix resulting from leave-one-out cross-

validation on the PC-LDA model of the six yellow reactive dyed fibers after FD 

preprocessing. A classification accuracy of 96.7% (58 correctly classified spectra out of 
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60) was obtained for the group of six yellow reactive dyed fibers after FD preprocessing. 

As was already shown, samples RY03 and RY05 have very similar absorbance spectra. 

The PCA scores plot in Figure 1.6 shows that even after FD preprocessing, there is still 

significant overlap of the 95% confidence ellipses calculated for the two groups of fibers. 

No preprocessing method used in this study allowed for complete discrimination of 

samples RY03 and RY05.   

The positive effect that each preprocessing method has on UV-Vis absorbance 

spectra is perhaps best shown using samples RY03 and RY04 (Figure 1.7). These fibers 

gave very similar raw spectra, but were easily distinguishable after several types of 

preprocessing. Feature by feature t-tests were used to measure the difference between the 

group means at each observation point. The largest t-statistic value and the wavelength at 

which it occurs are indicated following each preprocessing technique. As seen by the t-

statistic values from the raw and autoscaled spectra, autoscaling provided no 

improvement in separating the two groups. In general, the changes in classification 

accuracies for all groups before and after autoscaling were insignificant. Separation of the 

two groups of fibers was achieved to the greatest extent by calculating SDs. This is not 

surprising, as SDs correct for both baseline offsets and changes in slope. The PCA scores 

plots in Figure 1.8 are consistent with the t-statistic values for each preprocessing 

technique. The greatest separation between the two groups of fibers was gained using FD 

(Figures 1.8g, 1.8h, and 1.8i), SD (Figure 1.8j), and SNV preprocessing techniques 

(Figure 1.8d). 

  Classification accuracies of PCA-LDA, obtained after numerous methods of 

preprocessing, for the three dye classes of cotton fibers studied are shown in Table 1.3. 
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Methods involving FD and SD calculations show increased classification accuracies of 

direct dyed cotton fibers by as much as 11%. This gap in discrimination ability is 

lessened for vat dyed fibers and is non-existent in the analysis of reactive dyed fibers. 

Normalized spectra are slightly more discriminating, in the case of reactive dyed fibers, 

than FD spectra. Because, in general, these fibers had larger changes in absorbance 

relative to those of direct dyed fibers, this suggests there may be some cutoff value of ∆A 

at which calculating derivatives provides no further benefit over using other methods of 

preprocessing. The baseline correction method used in this study was found to have no 

real advantage over the other preprocessing techniques used, and therefore is not 

recommended. Classification accuracies for the entire dataset are shown in Table 1.4. All 

FD and SD preprocessing methods used in this study, in addition to normalization, can be 

considered effective methods for discriminating cotton fibers. 

3.2 Fiber Spectra Comparison Tool 

Using MATLAB, a Fiber Spectra Comparison Tool (FISCOTO) was developed 

which would allow an examiner to view absorbance spectra of textile fibers and calculate 

the previously described two sample single feature t-statistics. The design of the interface 

makes the program convenient for rapidly skimming through spectra of numerous 

questioned and known fibers and selecting out those fibers which require a more 

thorough comparison. The user-friendly interface for the FISCOTO application is 

displayed in Figure 1.9.  

Spectra from multiple fibers may be loaded into FISCOTO as .CSV files. 

FISCOTO uses the .CSV filenames and number of classes specified by the user to 

associate replicate spectra with a particular fiber sample. These samples are listed in the 
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Select fibers to compare list box on the left-hand side of the main user interface. 

Although the user can opt to select multiple fibers to compare, a t-test for the equality of 

the means is only performed when two samples are selected. The maximum t-statistic for 

all features is made available for the user on the main interface. The t-statistics for all 

features can be found by accessing the View t-test option located on the top right portion 

of the main window.  

To show an example of the single feature t-tests in FISCOTO, the same two vat-

dyed blue cotton fibers selected in Figure 1.9 will be used. After clicking the View t-test 

button, the two plots in Figure 1.10 are shown. Here, the calculated t-statistics for each 

feature of the raw data and data processed using Savitzky-Golay smoothing, the FD, and 

standard normal variate transformation are shown in black. The horizontal green 

threshold line denotes the critical value (tcrit) of Student's t at the 0.05 level of 

significance, and 9 degrees of freedom (df) (due to 10 samples in each group). When the 

black line is above the green line for any comparison of means at a single feature value, 

the null hypothesis of equal means can be rejected at the 95% level of confidence. The 

plots of calculated t-values across the feature domain also have red lines at tcalc = ~4.3, 

representing a conservative choice for a threshold value. The most significant difference 

between groups in the processed data is seen near 416 nm. This corresponds to the large 

separation shown at that wavelength shown on the After processing panel in Figure 1.9. 

In addition to hypothesis testing, this software allows users to remove undesired 

features and visualize raw or processed data. FISCOTO currently makes available 12 

separate methods of processing including those used in this work prior to multivariate 

classification. A summary of all processing performed on the data and the order in which 
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it was performed is listed in the box in the bottom right corner of the interface. This 

serves as a reminder to the user as to how the data has been manipulated. The box will fill 

in automatically when previously saved data is loaded back into the program. The Reset 

option located by the Summary box undoes all performed preprocessing steps and 

restores the original data. 

4. CONCLUSION 

Performing PCA-LDA on derivative spectra can improve discrimination of cotton 

fibers over other methods of spectral preprocessing. Significant increases in 

discrimination of fibers with mostly flat spectra with small changes in absorbance are 

possible using derivative spectra. Direct dyed cotton fibers are one class of fibers that 

would seemingly benefit significantly from utilizing derivative spectra, since these fibers 

had distinctively low ∆A values. It should be noted that the effect of smoothing the 

spectra using a Savitzky-Golay polynomial28 prior to calculating the FD was examined. 

Although Savitzky-Golay polynomial smoothing may be advantageous for visual 

examinations, increases in classification accuracies were not gained by using a higher-

order polynomial smooth rather than a linear smooth. 

As was stated by Wiggins et al.19, there is a risk of FD spectra misclassifying 

matching fibers with large variations in absorbance. This resulted in classification 

accuracies of FD spectra being slightly lower in the analysis of reactive dyed cotton 

fibers when compared to the normalized spectra. Still, the high classification accuracies 

(greater than 90%) achieved using all methods of preprocessing are significant due to the 

difficulty of extracting these dyes for analysis by other techniques such as thin-layer 

chromatography or liquid chromatography. Because no single method of preprocessing is 
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best for all types of spectra, a convenient software application with many preprocessing 

options available, called FISCOTO, was developed for rapid comparisons of fiber 

spectra. The program is freely available and can be attained by sending a request to the 

author. 
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Table 1.1 Groups of studied fibers categorized by dye and color. 

 

Subclass Color 
Spectra 

examined 
Subclass Color 

Spectra 

examined 

Direct Blue 60 Reactive Black 80 

 Green 60  Blue 110 

 Grey 50  Brown 150 

 Pink 30  Green 100 

 White 20  Grey 20 

 Yellow 40  Orange 40 

Vat Blue 40  Pink 20 

 Brown 60  Purple 80 

 Green 70  Red 80 

 Pink 20  Yellow 60 

 Yellow 20    
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Table 1.2 Confusion matrix for discrimination of yellow reactive dyed fibers. 

 
 Actual 

Predicted RY01 RY02 RY03 RY04 RY05 RY06 

RY01 10 0 0 0 0 0 

RY02 0 10 0 0 0 0 

RY03 0 0 8 0 0 0 

RY04 0 0 0 10 0 0 

RY05 0 0 2 0 10 0 

RY06 0 0 0 0 0 10 
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Table 1.3 Performance of PCA-LDA models following different preprocessing 

techniques. 

 
Dye Class Preprocessing technique Total  

spectra 

Correctly 

classified 

Classification  

accuracy (%) 

Direct None 260 212 82 

 Autoscale 260 220 85 

 Normalization  260 218 84 

 SNV 260 218 85 

 Baseline correction 260 211 81 

 Baseline correction + normalization 260 208 80 

 First derivative  260 236 91 

 First derivative + normalization 260 237 91 

 First derivative + SNV 260 231 89 

 Second derivative  260 232 89 

Vat None 210 185 88 

 Autoscale 210 184 88 

 Normalization 210 188 90 

 SNV 210 187 89 

 Baseline correction 210 181 86 

 Baseline correction + normalization  210 187 89 

 First derivative 210 188 90 

 First derivative + normalization 210 186 89 

 First derivative + SNV 210 185 88 

 Second derivative  210 193 92 

Reactive None 740 671 91 

 Autoscale 740 677 91 

 Normalization  740 712 96 

 SNV 740 668 90 

 Baseline correction 740 687 93 

 Baseline correction + normalization 740 673 91 

 First derivative  740 709 96 

 First derivative + normalization 740 705 95 

 First derivative + SNV 740 697 94 

 Second derivative  740 694 94 
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Table 1.4 Correctly classified spectra in each fiber dye class and color based category, with the number of principal components used 

for each model in parentheses, following different preprocessing techniques. 

 

Dye Class Color Preprocessing 

  None Autos. Norm. SNV 

Baseline 

correction 

BC +  

norm. FD 

FD +  

norm. 

FD +  

SNV SD 

Direct Blue 50 (6) 51 (6) 46 (6) 41 (7) 51 (6) 46 (7) 55 (4) 53 (6) 51 (4) 50 (4) 

 Green 43 (5) 43 (5) 50 (7) 50 (7) 46 (7) 44 (7) 49 (6) 51 (7) 48 (7) 50 (8) 

 Grey 44 (5) 44 (5) 43 (6) 36 (7) 42 (6) 39 (8) 47 (5) 49 (4) 46 (5) 50 (8) 

 Pink 29 (7) 29 (7) 28 (6) 26 (6) 25 (6) 27 (6) 30 (5) 30 (5) 29 (5) 29 (5) 

 White 17 (4) 17 (4) 19 (6) 19 (6) 18 (4) 18 (5) 20 (5) 20 (4) 20 (5) 19 (2) 

 Yellow 34 (7) 34 (7) 32 (7) 32 (8) 29 (6) 34 (8) 35 (7) 37 (7) 37 (7) 34 (5) 

Vat Blue 40 (4) 40 (4) 40 (4) 40 (6) 40 (4) 39 (4) 40 (5) 40 (5) 40 (5) 40 (3) 

 Brown 42 (5) 41 (5) 40 (5) 41 (7) 38 (5) 43 (8) 44 (8) 43 (6) 43 (8) 50 (6) 

 Green 63 (5) 63 (5) 69 (5) 66 (5) 63 (5) 65 (5) 63 (5) 62 (5)  62 (5)  64 (8) 

 Pink 20 (4) 20 (4) 19 (3) 20 (4) 20 (5) 20 (6) 20 (5) 20 (5) 19(6) 20 (2) 

 Yellow 20 (3) 20 (3) 20 (2) 19 (2) 19 (3) 20 (4) 20 (3) 20 (3) 20 (3) 19 (3) 

Reactive Black 74 (6) 75 (5) 76 (6) 77 (7) 77 (6) 78 (5) 77 (5) 74 (5) 76 (5) 75 (5) 

 Blue 95 (6) 98 (5) 108 (5) 102 (4) 98 (5) 103 (4) 107 (5) 101 (5) 104 (5) 103 (5) 

 Brown 129 (5) 127 (5) 138 (4) 108 (4) 131 (4) 105 (5) 137 (3) 137 (4) 126 (3) 137 (6)  

 Green 89 (4) 90 (4) 96 (4) 91 (6) 91 (4) 94 (6) 93 (4) 97 (4) 96 (3) 92 (5) 

 Grey 20 (3) 20 (3) 19 (4) 19 (6) 20 (3) 19 (6) 20 (2) 20 (2) 20 (2) 20 (2) 

 Orange 40 (4) 40 (4) 40 (4) 40 (4) 40 (3) 40 (4) 40 (2) 40 (2) 39 (2) 40 (2) 

 Pink 20 (2) 20 (2) 20 (2) 20 (2) 20 (2) 20 (2) 20 (2) 20 (2) 20 (2) 20 (2) 

 Purple 72 (5) 74 (5) 78 (6) 79 (3) 77 (5) 78 (5) 77 (3) 78 (3) 78 (3) 77 (3) 

 Red 75 (5) 75 (5) 79 (5) 79 (4) 77 (4) 78 (6) 79 (5) 78 (5)  79 (5) 76 (6) 

 Yellow 57 (7) 58 (7) 58 (4) 53 (7) 57 (7) 58 (7) 58 (4) 58 (7) 58 (6) 58 (6) 

Total Correct 1073 1079 1118 1060 1079 1068 1131 1128 1111 1123 

Classification (%) 89 89 92 88 89 88 93 93 92 93 
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Figure 1.1 Gaussian shaped absorbance spectra and associated Amax and Amin locations. 
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Figure 1.2 Absorbance spectra of three cotton fibers containing A) direct blue 86 and 

direct direct yellow 106, B) vat black 25, vat brown 81 and vat yellow 33, and C) reactive 

yellow 206. 
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Figure 1.3 Absorbance spectra of six reactive dyed yellow cotton fibers (10 replicates 

each). 
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Figure 1.4 Averaged absorbance spectra for three of six yellow reactive dyed cotton fiber 

samples. 
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Figure 1.5 Scree plot obtained following PCA on first derivative spectra of six yellow 

reactive dyed cotton fibers. 
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Figure 1.6 PCA scores plot for six reactive dyed yellow cotton fibers after first derivative 

preprocessing. 
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Figure 1.7 Absorbance spectra (10 replicates each) of samples RY03 and RY04 after a) 

no preprocessing, b) autoscaling, c) normalization, d) SNV, e) baseline correction, f) 

baseline correction plus normalization, g) first derivative, h) first derivative plus 

normalization, i) first derivative plus SNV, and j) second derivative. 
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Figure 1.7 Absorbance spectra (10 replicates each) of samples RY03 and RY04 after a) 

no preprocessing, b) autoscaling, c) normalization, d) SNV, e) baseline correction, f) 

baseline correction plus normalization, g) first derivative, h) first derivative plus 

normalization, i) first derivative plus SNV, and j) second derivative. 
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Figure 1.8 PCA scores plot resulting from absorbance spectra (10 replicates each) of 

samples RY03 and RY04 after a) no preprocessing, b) autoscaling, c) normalization, d) 

SNV, e) baseline correction, f) baseline correction plus normalization, g) first derivative, 

h) first derivative plus normalization, i) first derivative plus SNV, and j) second 

derivative. 
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Figure 1.8 PCA scores plot resulting from absorbance spectra (10 replicates each) of 

samples RY04 and RY05 after a) no preprocessing, b) autoscaling, c) normalization, d) 

SNV, e) baseline correction, f) baseline correction plus normalization, g) first derivative, 

h) first derivative plus normalization, i) first derivative plus SNV, and j) second 

derivative. 
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Figure 1.9 Fiber spectra comparison tool graphical user interface. 
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Figure 1.10 Calculated feature-by-feature t-statistics for raw (left) and processed (right) 

data. 
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CHAPTER 2 

CLASSIFICATION STRATEGIES FOR FUSING UV-VISIBLE 

ABSORBANCE AND FLUORESCENCE MEASUREMENTS FROM 

TEXTILE FIBERS 

 

ABSTRACT 

A recent emphasis in forensic science has been placed on the development of 

statistical methods for improving the interpretability of trace evidence analyses. 

Determining which non-destructive analytical methods will have the highest 

discrimination power for trace evidence examinations is significant to forensic 

laboratories to save time and assets. Knowing which analytical techniques provide 

complimentary information on the evidence is also useful for ensuring that the data 

collected is utilized in the optimum manner. 

This study compares the discrimination ability of ultraviolet-visible (UV-Vis) 

microspectrophotometry (MSP) and microspectrofluorimetry (MSF), two common 

techniques used by forensic analysts to study textile fibers. Fusion of MSP and MSF data 

was also evaluated. Low-, intermediate-, and high-level data fusion strategies were 

employed in discriminations of over 400 dyed textile fiber samples of cotton, acrylic, 

nylon 6,6, and polyester, resulting in correct classification rates of 97.8%, 94.6%, and 

93.8%, respectively. Comparatively, classification rates of 89.5%, 87.7% and 87.6% 

resulted from quadratic discriminant analysis models built from isolated absorbance 

measurements, fluorescence measurements with 405 nm excitation, and fluorescence 
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measurements with 546 nm excitation, respectively. The results suggest that data fusion 

is useful for providing additional discriminatory information on textile fibers when 

compared to single technique data evaluations. 

1. INTRODUCTION 

Textile fibers are a frequently encountered form of class evidence in forensic 

investigations of incidents involving personal contact.1,2 Cotton is the most abundant 

natural source of fibers in the world3, and nylon, polyester, and acrylic fibers are three of 

the most common classes of synthetic fibers likely to be encountered in forensic 

investigations.4 As a whole, these fibers are found as trace evidence in more than 80% of 

all criminal cases pertaining to textile fibers.5 

Initial fiber analysis is often carried out using forms of microscopy. Polarized 

light microscopy is beneficial towards determining the polymer class (especially for 

synthetic fibers), and stereomicroscopy enables an examiner to document the physical 

characteristics of a fiber such as diameter, color, and luster.6,7 If the studied fibers, 

however, are a metameric match, they may not be excluded as originating from the same 

source. In cases such as these, further analyses can be carried out using optical 

spectroscopy techniques. 

Ultraviolet-visible (UV-Vis) microspectrophotometry (MSP) is a widely accepted 

technique for discriminating fibers based on color.8 Color is often the most discriminating 

characteristic of dyed fibers and is the only distinctive feature of many natural fibers such 

as cottons due to a lack of variation in morphology.8,9 To visualize and interpret the vast 

amount of data that can be collected using one or more spectroscopic techniques, 

chemometric tools are required. 
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Data fusion is a chemometric approach which merges data from multiple sources 

with the expectation that a better interpretation can be gained from the combined data in 

comparison to any single sensor. Data fusion has been examined for multiple applications 

in analytical chemistry and has been heavily used in the food and drink realm.10-16 A 

fused data process falls into one of three categories: low-level fusion (LLF), 

intermediate-level fusion (ILF), and high-level fusion (HLF). The fusion level is 

determined by the stage of data processing at which fusion is carried out. LLF involves 

merging the raw or preprocessed data signals of each set of input data.10,11,17 Similarly, 

ILF also involves fusion at the data-level but occurs after feature selection or feature 

extraction is employed.18 For this reason, ILF is also known as feature-level fusion. In 

HLF, a separate model is built for each set of input data, and the responses of each model 

are then “fused” together to create one final response.19 

With relative ease, fusible data can be provided by modern MSP instruments 

capable of collecting transmittance, absorbance, reflectance, and fluorescence 

information from fibers. Though most fiber comparisons are carried out by a simple 

examination of UV-Vis transmittance or absorbance spectra, microspectrofluorimetry 

(MSF) is a tool often used following MSP to provide additional discriminatory 

information. This is especially true in cases where the absorbance and transmittance 

spectra resulting from multiple fibers appear to match. In addition to the dye components, 

dye-bath additives, and the garment material may contribute to a fiber’s fluorescence 

spectrum.8 

This study investigates various strategies for the fusion of UV-Vis absorbance and 

fluorescence data collected from acrylic, cotton, nylon 6,6, and polyester fibers. The 
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ability to discriminate these fibers was examined using multivariate classification 

techniques in the form of quadratic discriminant analysis (QDA) or naïve Bayes 

classification (NBC). Multivariate approaches make it possible to extract as much 

information as possible from the data, and have been applied previously to color-based 

discriminations of textile fibers.20,21 Lastly, the classification accuracies from fused UV-

Vis MSP and MSF data were compared to the results found using single modality. 

2. EXPERIMENTAL 

2.1 Materials 

A total of 482 dyed textile fibers collected from various manufacturers were 

examined in the study. All fibers were classified as belonging to one of four classes, 

acrylic (at least 85% acrylonitrile), cotton, nylon 6,6, and polyester, based on their 

polymer component. The fibers were further placed in subgroups based on perceived 

color of source material to reduce the number of overall comparisons. Single fibers were 

then removed from the source using razor blades and centered on quartz microscope 

slides (CRAIC Technologies, Altadena, CA, and Esco Products Inc., Oak Ridge, NJ) 

using micro tweezers. Spectral grade glycerin (Spectrum Chemical Mfg. Corp., Gardena, 

CA) and quartz coverslips were used to mount the fibers on the slides for analysis by 

MSP and MSF. 

2.2 Instrumentation 

UV-Vis absorbance and fluorescence spectra were acquired using a CRAIC 

Technologies Quantum Detection Instrument (QDI) 1000 MSP. Data acquisition was 

carried out using GRAMS/AI 7.0 (Thermo Galactic, Salem, NH). For absorbance 

measurements, the MSP was operated in transmission mode using a xenon lamp and an 
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integration time for the charge coupled device (CCD) detector of ~4 ms. Fluorescence 

was carried out using a mercury light source with a CCD integration time of ~200 ms. 

Fluorescence spectra were acquired after 365, 405, 436, and 546 nm excitations. All 

absorbance and fluorescence spectra were calculated by performing an average of 100 

scans over a range of 200-850 nm with a 10 nm bandwidth. 

2.3 Data Analysis 

 All data was analyzed using MATLAB version 8.3 (The Mathworks, Inc., Natick, 

MA) and the statistics toolbox. The ‘classify’ function with discriminant types ‘quadratic’ 

and ‘diagquadratic’ was used to perform QDA and NBC, respectively. 

2.3.1 Preprocessing 

All absorbance spectra were truncated to the region of 380 to 700 nm. Truncation 

of fluorescence spectra was based on the excitation cube used. The lower wavelength 

cutoff was 390, 444, 470, 581 nm for 365, 405, 436, 546 nm excitation, respectively, with 

an upper wavelength cutoff of 850 nm. 

Further preprocessing to be performed on the datasets was dependent on whether 

the preprocessed data would be analyzed individually or as part of a fused data 

classification model. Preprocessing of the absorbance data to be analyzed individually 

was carried out by first calculating the first derivative of each spectrum. Noise reduction 

was accomplished using a Savitzky-Golay22 numerical algorithm with a second order 

polynomial and nine point moving window. The first derivative is followed by a standard 

normal variate transformation. Fluorescence data to be analyzed individually was 

preprocessed using a linear smoothing algorithm with a window width of 31 points. The 
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final preprocessing step for the individual absorbance and fluorescence datasets is mean 

centering, a technique which scales each feature to a mean of zero. 

Fused absorbance and fluorescence datasets were preprocessed using the second 

derivative. The second derivative spectra were calculated using the gap-segment method. 

In the gap-segment technique, derivatives are calculated over a number of variables (i.e., 

segments) as opposed to adjacent points. The gap, also defined by the user, is the number 

of variables between the segments. Different types of spectra from multiple datasets were 

examined using various gap-segment combinations. A gap size of 31 points and segment 

size of 35 points were chosen as the parameters to be used based on the resulting 

absorbance and fluorescence spectra which appeared to strike a balance between feature 

retention and spectral smoothing. As with the single sensor data, the datasets which 

would ultimately be fused are also mean centered. 

2.3.2 Classification 

2.3.2.1 Single Modality 

Preprocessed absorbance and fluorescence spectra were subjected to principal 

component analysis (PCA). Using PCA, new sets of uncorrelated variables (PCs) are 

generated for each dataset.23 The number of PCs from each set of data to be used for 

QDA was selected by plotting the variance captured by each PC (i.e., scree plots). QDA 

is similar to the popularly used discriminant method, linear discriminant analysis, 

developed by R. A. Fisher in 1936.24 In QDA, however, a separate variance/covariance 

matrix is calculated for each group as opposed to the pooled variance/covariance matrix 

used in LDA. The result of using stratified covariance matrices is a quadratic decision 

boundary. Classification accuracies for single modality models (the percentage of the 
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total number of classification attempts which were performed correctly) were determined 

using leave-one-out cross-validation. 

2.3.2.2 Low-level Fusion 

A schematic of the LLF process is shown in Figure 2.1. To avoid increased 

complexity, only fluorescence measurements collected at two excitation wavelengths 

(405 and 546 nm) were used in the fused data models. The original data collected 

utilizing MSP and MSF was viewed as three separate n×p matrices, where n is the 

number of samples and p is the number of measured wavelengths. Before fusion, p is 

equal to 940, 1193, and 790 for absorbance, fluorescence-405, and fluorescence-546, 

respectively. After all data has been preprocessed as described previously, the three 

matrices are horizontally concatenated, generating a single matrix with n rows and 2923 

(940 + 1193 + 790) columns. 

In LLF, no feature extraction or selection techniques were carried out prior to 

classification. Discrimination of the fiber samples in LLF was carried out utilizing the 

naïve Bayes method of classification which uses probabilistic responses. The naïve Bayes 

approach assumes that the features for a given class are independent (i.e., the covariance 

matrices are diagonal ones). Though this assumption is generally not valid, the technique 

remains a popular one due the surprisingly good results that are often obtained on real-

world datasets.25 The substantial bias generated by assuming the features of a class are 

independent is usually countered by savings in variance. Classification accuracies for 

fused data models were determined using 100 iterations of stratified 10-fold cross-

validation. 
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2.3.2.3 Intermediate-level Fusion 

Figure 2.2 shows the process by which ILF was carried out. Feature extraction 

using PCA was performed on the individual preprocessed data matrices to reduce the 

total number of variables. The significant PCs from each dataset, again determined using 

scree plots, were then horizontally concatenated to form a final matrix containing n rows 

with the number of columns equaling the total number of PCs selected from all three 

techniques. The final step in the ILF procedure is to classify each sample using the same 

naïve Bayes approach and stratified iterated10-fold cross-validation presented for LLF. 

2.3.2.4 High-level Fusion 

The HLF approach used in this study is described in Figure 2.3. PCA was 

performed on the preprocessed data collected from each instrumental technique as in ILF. 

In HLF, however, three individual multivariate classification models based on QDA are 

built using the resulting PCs from each set of data. Because QDA lacks the naïve 

assumption that the covariance is zero (i.e., the variables are independent), the method 

would seemingly be a more prudent approach for all fusion experiments in this study. 

However, including covariance estimates for each class reduces the total number of PCs 

that can be used for classification. Because HLF involves dimensionality reduction and 

the creation of separate classification models for each set of measurements, the number of 

variables in HLF is expected to be much lower than the number of variables used in LLF 

and ILF. 

Each fiber was given a final classification based on a majority vote26 of the three 

classification models. In instances where no majority was obtained, the fiber was 

designated a group based on the classification resulting from the visible absorbance 
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technique. Absorbance measurements were given more weight towards the final 

classifications, because MSP is the preferred technique for discriminating dyed textile 

fibers in forensic analyses.  

3. RESULTS AND DISCUSSION 

3.1 Absorbance versus fluorescence 

The benefit of using first derivative preprocessing on absorbance spectra was 

observed during the analysis of a set of five yellow acrylic fibers. Leave-one-out cross-

validation was performed on the PCA-QDA models of both the raw spectra and first 

derivative spectra. The resulting confusion matrices displayed in Table 2.1 show the 

difficulty of separating yellow acrylic fiber samples numbered two and four based on 

their raw spectra. Calculation of first derivative, however, resulted in a classification 

accuracy of 100% for the same set of fibers. The inability of the PCA-QDA model to 

discriminate yellow acrylic samples two and four is shown visually using the canonical 

variate scores plot in Figure 2.4. Nearly 100% of the variation in the raw and first 

derivative datasets can be explained using the axes of the first three canonical variates. 

Although these axes can be rotated in all directions, no such rotation is able to avoid 

overlap of the 95% confidence ellipses resulting from the raw spectra of samples two and 

four. However, the QDA scores plot produced by first derivative data shows a clear 

separation between these two samples. 

Figure 2.5 shows the UV-Vis absorbance spectra for samples two and four of the 

yellow acrylic dataset before and after calculating the first derivative. The strong 

similarity between the raw absorption spectra results from the samples having the same 

three dyes: Yellow 29, Red 29, and Blue 147. Variance between these two groups of 
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spectra is more clearly displayed using first derivative preprocessing. The 460 to 490 nm 

region of the first derivative spectra, which corresponds to points of inflection in the 

original spectra, shows two distinct patterns for each sample. 

  Classification accuracies of UV-Vis MSP and MSF for all fibers in this study are 

listed in Table 2.2. Entries marked with “x” indicate groups of fibers in which QDA was 

not performed due to the limited number of samples that fell within a particular subclass. 

Numbers of correctly classified spectra based on leave-one-out cross validation are listed 

in columns for absorbance and fluorescence spectra at four excitation wavelengths. 

As a whole, UV-Vis MSP had the highest discriminating power of any of the 

methods used in the study. Classification accuracies of UV-Vis MSP for acrylic, cotton, 

nylon 6,6, and polyester were 95.68%, 86.13%, 95.36%, and 81.38%, respectively. The 

lower discriminating power witnessed for cotton are not unexpected. Uneven dye uptakes 

by natural fibers such as cotton give higher degrees of variation between replicate 

spectra. The cotton fibers in this study also showed some of the lowest absorbance values 

of any class which further hindered classifications. Many such cotton fibers contained 

direct dyes, a selection of dyes which are popular due to their cost and ease of application 

but often display lower wetfastness and less brilliant colors when compared to other 

common dying classes for cotton such as reactive and vat dyes. Highest discrimination of 

absorbance spectra was seen in groups of orange (98.83%), red (97.40%), and purple 

(96.93%). Lowest discrimination of absorbance spectra was seen with brown and white 

fibers (especially acrylic and nylon 6,6) which mainly had low absorbing featureless 

spectra in the visible range studied. White fibers often only contain optical brighteners, 

compounds that do not absorb in the visible region. 



www.manaraa.com

 

45 
 

The high number of misclassifications seen within brown polyester fibers 

contributed to the decreased discrimination ability of this method when applied to 

polyester. In addition to the difficulty of discriminating the UV-Vis spectra of brown 

polyester fibers, large sample sets tend to hinder the prediction accuracy of the QDA 

model. The PCA scores plot of the preprocessed absorbance spectra for all brown 

polyester fibers in this study is shown Figure 2.6. From this plot, it was determined that 

the large confidence ellipses associated with samples 3 and 18 are a result of significant 

variation between spectra within each group. The large within-group variation in these 

samples made misclassifications of their spectra likely to occur. The scores plot also 

indicates samples 8, 9, and 10 as being clearly distinguishable from all other brown 

polyester samples, and appears to show two separate clusters containing multiple 

samples. 

There is a significant amount of overlap between samples 22, 24, 26, 28, and 30 

(Cluster A in Figure 2.6). Replicate absorbance spectra of the samples in Cluster A were 

averaged and are shown in Figure 2.7. UV-Vis spectra of these samples were similar, but 

had multiple points of comparison. When analyzed separately, 46 of 50 (92%) of these 

spectra were correctly classified by PCA-QDA. All other brown polyester samples not 

previously mentioned (29 in all) are located in the second cluster (Cluster B in Figure 

2.6). Many of the fibers in Cluster B share spectra which are either broad or low-

absorbing, and have limited points of comparison. In general, it is difficult to discriminate 

these types of spectra regardless of the method used. Analysis of this group resulted in 

190 of 290 (65.52%) spectra being classified correctly.  
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Fluorescence spectra collected with 405, 436, and 545 nm excitations all showed 

similar discrimination. The classification accuracies resulting from a lower excitation 

wavelength of 365 nm showed no distinct advantage over other methods for any group 

studied, and therefore by itself is not recommended for fiber analysis. As with UV-Vis 

MSP, discrimination was highest for MSF in groups of orange and purple fibers with 

each group having classification accuracies of over 90% at all wavelengths of excitation. 

Discrimination at all excitation wavelengths is lowest for nylon fibers. The issues with 

cotton fibers, mentioned previously with absorbance spectra, are apparent in the 

discrimination power of MSF as well. 

Unlike absorption spectra, which are solely the result of the dyes contained on or 

within the fiber, fluorescence spectra can be influenced by a fiber’s polymeric 

composition, its dye components, or any optical brighteners added to it. Two types of 

fibers which saw increases in discrimination after transitioning from absorption to 

fluorescence spectral evaluations were polyester (from 80.7% to 90.5%) and acrylic 

(from 95.8% to 97.5%). Application of fluorescent dyes is more commonly associated 

with synthetic fibers such as polyester and acrylic than natural fibers such as cotton. Both 

disperse and cationic (basic) dyes were used in the dying process of the polyester fibers, 

whereas the acrylic fibers were exclusively dyed using cationic dyes. Disperse dyes 

(especially greenish-yellow shades) include some of the most important industrial 

fluorescent dyes. Approximately 25% of the 123 polyester fibers studied in this work 

contained Disperse Yellow 108. All polyester fibers dyed with Disperse Yellow 108 

showed high fluorescence intensities using 405 nm excitation. Similarly, all acrylic fibers 
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dyed with Basic Blue 3 showed considerable fluorescence using 546 nm excitation. Of 

the 125 acrylic fibers studied, only ~7% were noted to have been dyed with Basic Blue 3. 

The ability to correctly classify many fluorescence spectra of brown polyester 

fibers which were misclassified based on their absorption spectra is one reason the 

classification rates between the two methods are so comparable. Figure 2.8 shows the 

fluorescence spectra of one such sample, which gave an almost featureless absorption 

spectrum, at three different excitation wavelengths. Although differing greatly in 

intensity, the fluorescence spectra of this sample have multiple points of comparison 

which aid in discriminant analysis. The double-peak shape resulting from emission in the 

blue region after excitation at 365 nm is consistent with the types of fluorescence 

emission spectra found for optical brighteners.8 It is believed that the lower accuracies 

obtained from fluorescence at 365 nm are due to the limited variability of optical 

brightening agents and a reduction in fluorescence contribution of the dye components 

when shifting into the UV region. 

3.2 Fusion of absorbance and fluorescence measurements 

Absorbance and fluorescence measurements collected at two different excitation 

wavelengths (405 and 546 nm) generated a total of three matrices for data fusion 

analyses. In the previous section, it was determined using PCA-QDA to discriminate the 

same fibers that fluorescence data resulting from UV (365 nm) excitation resulted in 

significantly lower classification accuracies compared to visible wavelength fluorescence 

excitations. Based on that result, and the desire to limit the number of measurements 

which need to be collected, only two (violet and green) fluorescence excitations were 

selected for fusion. 
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A summary of classification results for all data fusion methods is presented in 

Table 2.3. When comparing the three levels of data fusion, LLF showed greater than 

three percent increases in classification accuracies over ILF and HLF. The likely cause of 

the better results obtained using LLF, is the lack of a feature extraction step in the 

process. By using PCA to reduce the dimensionality of a dataset, it is possible that 

valuable discriminatory information will be lost if the correct numbers of PCs are not 

retained. Because QDA was used in HLF for multivariate classification, there is a limit 

on the number of PCs which may be selected. The total number of PCs used towards 

classification must be at least two fewer than the number of replicate spectra collected per 

fiber.27 Otherwise, singular covariance matrices which cannot be inverted can result for 

one or more classes. This restriction may become a problem when the size of the group is 

large and the number of replicate spectra collected per fiber is small. For all groups 

including 10 or more fiber samples, an average classification of 93.4% was determined 

for HLF. This result is significantly less than the 97.6% accuracy determined for LLF in 

which PCA was not performed. 

One instance where HLF was largely outperformed by LLF was with a set of 39 

brown polyester fibers, the largest group studied, of which 10 replicate spectra per fiber 

were collected. Previously, fibers in this group had been discriminated based on their 

isolated absorbance, fluorescence-405, and fluorescence-546 spectra using QDA. The 

classification accuracies obtained were 76.3%, 90.5%, and 88.4% for absorbance, 

fluorescence-405, and fluorescence-546 models, respectively. The problem of inadequate 

PCs which may have resulted in the lower discrimination ability of the individual 

absorbance model has less of an impact in fused models.  
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Figure 2.9 shows absorbance, fluorescence-405, and fluorescence-546 spectra 

before and after second derivative preprocessing followed by mean centering for five 

yellow acrylic fibers. Two of the fibers, AY02 and AY04, share similar raw absorbance 

and fluorescence-546 spectra. The preprocessed absorbance spectra for the same two 

fibers appear to show some slight differences between the groups. Conversely, the 

preprocessed fluorescence-546 spectra show no clear differences between AY02 and 

AY04. The raw fluorescence-405 spectral intensities observed by AY02 are much greater 

than those of AY04 and give very different second derivative/mean-centered spectra. Had 

one used only fluorescence-405 measurements for classification, however, it would have 

been difficult to discriminate AY01, AY02, and AY05. It is only by examining the 

fluorescence-546 spectra that the strong fluorescence of Basic Blue 3, one of the three 

cationic dyes bound to sample AY05, can be seen. By using data fusion to take all three 

techniques into account, the five yellow acrylic fibers were discriminated with 100% 

accuracy regardless of the level of fusion used.  

With a difference in classification accuracy of less than one percent, it was 

concluded that the ILF and HLF processes gave very similar outcomes. In ILF and HLF, 

PCA is carried out on the preprocessed data. PCA scores plots resulting from a group of 

purple cotton fibers, one of the medium-sized groups in the study, are shown in Figure 

2.10. In HLF fusion, classifications are based on the PCs calculated for each individual 

technique. The scores plot for the preprocessed absorbance data shows only three groups, 

CP03, CP04, and CP06, as being completely distinguishable based on the 95% 

confidence ellipses provided for each group. By examining the scores plot generated 

from the fluorescence-405 technique, it can be concluded that groups CP01 and CP05 are 
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distinguishable from the overlapping samples in the absorbance plot. This leaves four 

remaining fibers, two of which (CP02 and CP09) appear to be separable using 

fluorescence-546. Because CP07 and CP08 show overlap in the scores plots resulting 

from all techniques, it is not surprising that several CP08 samples were predicted as 

belonging to CP07, as indicated in Table 2.4, based on the simple majority vote used in 

HLF. It is also worth noting that fibers CP07 and CP08 were dyed using the same red, 

blue and yellow reactive dyes. The fused scores plot shows the high similarity between 

CP02 and CP08 which resulted in multiple CP02 samples being misclassified during the 

ILF process. Naïve Bayes classification on concatenated preprocessed spectra rather than 

PC scores resulted in zero misclassifications in the set of purple cotton fibers using LLF.  

In instances where fibers were distinguishable using all three instrumental 

techniques, the HLF method can diminish the impact of spectral outliers. For example, if 

one of the replicate absorbance spectra obtained from a sample was an outlier, it is likely 

that the concatenated fluorescence measurements will not be outliers. As a result, the 

outlier in the absorbance spectra would not affect the overall classification accuracy. In 

instances where only one classifier is used, outliers can cause losses in accuracy if some 

form of multivariate outlier detection is not used beforehand. 

4. CONCLUSION 

Multivariate classification methods are an effective way to discriminate replicate 

spectra of multiple fibers. In forensics, it is important to identify which methods of 

analyses are most discriminating in order to ensure that as little time and resources are 

spent examining evidence as possible. While both MSP and MSF provided discriminating 

information, MSP collectively outperformed the fluorescence methods used. Two factors 
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which seemingly contributed to the lower classification accuracies obtained utilizing 

fluorescence spectra were the sizeable within-class variations between spectra as well as 

the increased noise in fluorescence spectra as compared to absorption spectra. Using 

PCA-QDA, a classification of nearly 90% was achieved for 482 fibers studied using UV-

Vis MSP. 

The effect of fusing absorbance and fluorescence measurements was also 

investigated for the purpose of discriminating dyed textile fibers. The classification 

accuracies resulting from LLF, ILF, and HLF were between four and eight percent higher 

than those found using only UV-Vis MSP measurements. This suggests that additional 

discriminatory information can be obtained about the fibers by combining UV-Vis 

absorbance and fluorescence data. Mainly, this is due to fluorescent dyes, but may also 

include dye bath additives and contributions from the garment. When comparing the 

three levels of data fusion, it was found that LLF outperformed ILF and HLF by greater 

than three percent. Clearly, the naïve Bayes classifier worked well for the full datasets in 

this study. Therefore, dimensionality reduction was unnecessary. By extracting features 

using PCA, there is a risk of throwing away valuable information. 

It is clear from this study that the discrimination power of MSF was dependent on 

the number of fibers in our database containing fluorescent dyes. Future work in this area 

should focus on determining the likelihood of finding fibers with fluorescent dyes in 

forensic casework. This will allow forensic analysts to determine how often MSF is likely 

to provide useful information. In addition, some of the more complex methods for 

combining pattern classifiers in HLF, as opposed to the simple majority vote technique 

applied in this study, could be subjects of interest. 
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Table 2.1 Confusion matrices displaying results of leave-one-out cross-validation for five 

yellow acrylic samples (10 replicate spectra each). 

 
Data Group Observed classifications Classification 

accuracy (%) 
G1 G2 G3 G4 G5 

Raw G1 10 0 0 0 0 100.00 

 G2 0 7 0 3 0 70.00 

 G3 0 0 10 0 0 100.00 

 G4 0 0 0 10 0 100.00 

 G5 0 0 0 0 10 100.00 

 Total 10 7 10 13 10 94.00 

        

First Deriv. G1 10 0 0 0 0 100.00 

 G2 0 10 0 0 0 100.00 

 G3 0 0 10 0 0 100.00 

 G4 0 0 0 10 0 100.00 

 G5 0 0 0 0 10 100.00 

 Total 10 10 10 10 10 100.00 
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Table 2.2 Numbers of correctly classified spectra for all fiber types and colors.

Color Fiber Type Groups Absorbance FE 365 FE 405 FE 436 FE 546 

Black Acrylic 6 60 58 57 55 60 

  Cotton 8 77 64 66 72 73 

  Nylon 6,6 13 129 91 96 92 105 

  Polyester 14 120 105 122 117 104 

Blue Acrylic 30 294 251 282 281 296 

  Cotton 21 182 147 164 165 149 

  Nylon 6,6 26 245 208 217 215 242 

  Polyester 19 171 171 173 168 183 

Brown Acrylic 17 163 160 159 161 168 

  Cotton 22 179 172 185 195 186 

  Nylon 6,6 16 144 117 115 111 101 

  Polyester 39 261 310 335 331 345 

Green Acrylic 16 154 147 154 158 157 

  Cotton 23 193 177 197 201 166 

  Nylon 6,6 15 147 112 111 129 118 

  Polyester 19 145 148 172 167 166 

Grey Acrylic 5 50 47 49 50 50 

  Cotton 7 62 59 63 65 54 

  Nylon 6,6 8 77 47 55 64 49 

  Polyester 6 49 51 58 60 60 

Orange Acrylic 3 30 30 30 30 30 

  Cotton 4 40 40 40 40 40 

  Nylon 6,6 7 69 53 65 60 55 

  Polyester 3 30 30 30 30 30 

Pink Acrylic 6 60 59 59 60 60 

  Cotton 7 62 59 61 61 51 

  Nylon 6,6 2 20 20 20 20 20 

  Polyester 2 20 20 20 20 20 

Purple Acrylic 10 99 98 97 98 98 

  Cotton 9 85 79 87 88 86 

  Nylon 6,6 7 69 62 58 58 66 

  Polyester 1 x x x x X 

Red Acrylic 16 159 154 156 153 154 

  Cotton 8 78 72 78 69 78 

  Nylon 6,6 12 116 92 100 95 105 

  Polyester 10 96 78 85 93 100 

White Acrylic 11 80 89 101 99 96 

  Cotton 2 20 18 16 17 15 

  Nylon 6,6 4 33 36 32 39 39 

  Polyester 7 69 61 62 67 67 

Yellow Acrylic 5 48 47 50 49 50 

  Cotton 13 90 109 113 106 90 

  Nylon 6,6 1 x x x x X 

  Polyester 4 40 38 39 40 38 

Total Spectra 4820 4314 3986 4229 4249 4220 

%Classification Accuracy   89.50 82.70 87.74 88.15 87.55 
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Table 2.3 Correct classification percentages and number of principal components used 

from each instrumental technique for all fiber types and colors. 

 

Color Fiber type Groups Classification (%)  Number of PCs 

   LLF ILF HLF Abs. F-405 F-546 

Black Acrylic 6 100 100 100 3 4 4 

  Cotton 8 97.34 97.31 97.04 5 6 5 

  Nylon 6,6 13 99.23 94.45 94.70 4 4 5 

  Polyester 14 92.37 90.61 90.94 4 5 4 

Blue Acrylic 30 100 96.53 98.94 4 6 5 

  Cotton 21 97.74 92.21 89.43 4 6 5 

  Nylon 6,6 26 99.32 98.29 96.92 5 5 5 

  Polyester 19 99.47 97.96 97.21 4 6 3 

Brown Acrylic 17 100 97.91 99.04 5 6 5 

  Cotton 22 96.69 90.37 89.09 5 6 4 

  Nylon 6,6 16 96.23 91.88 88.87 6 6 4 

  Polyester 39 94.37 85.18 88.55 5 5 6 

Green Acrylic 16 99.89 96.54 98.59 4 6 4 

  Cotton 23 98.16 94.82 90.62 5 5 5 

  Nylon 6,6 15 100 100 94.06 6 5 4 

  Polyester 19 91.97 87.01 91.75 5 5 5 

Grey Acrylic 5 100 100 100 3 6 3 

  Cotton 7 100 98.57 90.10 6 5 5 

  Nylon 6,6 8 99.39 81.98 76.54 2 5 5 

  Polyester 6 90.35 88.68 89.55 3 5 3 

Orange Acrylic 3 100 100 100 2 3 7 

  Cotton 4 100 100 100 4 4 3 

  Nylon 6,6 7 98.57 96.36 91.36 4 5 3 

  Polyester 3 100 100 100 4 4 2 

Pink Acrylic 6 100 100 100 5 5 5 

  Cotton 7 95.63 93.41 88.99 7 5 4 

  Nylon 6,6 2 100 95.00 100 2 2 7 

  Polyester 2 100 100 100 2 4 2 

Purple Acrylic 10 99.00 99.00 98.92 4 6 3 

  Cotton 9 100 99.00 99.17 4 5 6 

  Nylon 6,6 7 100 100 97.07 3 5 3 

  Polyester 1 x x x x x x 

Red Acrylic 16 99.38 99.38 99.70 5 6 5 

  Cotton 8 98.75 96.84 98.81 5 6 5 

  Nylon 6,6 12 97.68 94.94 95.47 6 6 5 

  Polyester 10 98.94 95.29 98.17 4 5 4 

White Acrylic 11 97.38 92.76 80.85 3 5 5 

  Cotton 2 88.45 96.70 89.60 7 2 2 

  Nylon 6,6 4 97.18 98.33 91.08 2 6 3 

  Polyester 7 100 100 97.99 3 3 5 

Yellow Acrylic 5 100 100 100 5 6 3 

  Cotton 13 95.89 94.20 89.33 4 4 5 

  Nylon 6,6 1 x x x x x x 

  Polyester 4 95.25 97.50 97.38 7 2 4 

% Classification Accuracy  97.78 94.61 93.81  
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Table 2.4 Confusion matrices of classification percentages based on 100 iterations of 10-

fold cross-validation for low-level fusion, intermediate-level fusion, and high-level fusion 

on nine purple cotton fibers. Percentages equaling zero are omitted. 

 

Actual class Predicted class 

 CP01 CP02 CP03 CP04 CP05 CP06 CP07 CP08 CP09 

Fusion type 

Low-level fusion 

CP01 100         

CP02  100        

CP03   100       

CP04    100      

CP05     100     

CP06      100    

CP07       100   

CP08        100  

CP09         100 

Intermediate-level fusion 

CP01 100         

CP02  92.2      7.8  

CP03   100       

CP04    100      

CP05     100     

CP06      100    

CP07       100   

CP08        100  

CP09         100 

High-level fusion 

CP01 100         

CP02  100        

CP03   100       

CP04    100      

CP05     100     

CP06      100    

CP07       100   

CP08       7.1 92.9  

CP09         100 

 

 



www.manaraa.com

 

60 
 

  

  

 

 

 

 

 

 

Figure 2.1 Schematic of low-level fusion process. 
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Figure 2.2 Schematic of intermediate-level fusion process. 
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Figure 2.3 Schematic of high-level fusion process. 
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Figure 2.4 Canonical variate scores plot resulting from raw (left) and first derivative 

(right) spectra of five yellow acrylic fibers. 
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Figure 2.5 Raw (left) and first derivative (right) UV-Vis absorbance spectra for two 

yellow acrylic samples (10 replicate spectra for each sample). 
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Figure 2.6 PCA scores plot of 39 brown polyester fibers with 95% elliptical confidence 

regions around clustered samples removed. 
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Figure 2.7 Averaged UV-Vis absorbance spectra for five brown polyester samples in 

Cluster B. 
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Figure 2.8 Replicate fluorescence spectra of brown polyester sample at three excitation 

wavelengths. Excitation at 405 nm not shown due to amount of overlap with 436 nm 

excitation. 
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Figure 2.9 Visible absorbance and fluorescence (405 and 546 nm excitations) spectra of 

five yellow acrylic fibers before (top) and after (bottom) second derivative preprocessing 

followed by mean centering. 
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Figure 2.10 PCA scores plots resulting from absorbance (top left), fluorescence with 405 

nm excitation (top right), fluorescence with 546 nm excitation (bottom left), and fusion of 

all three techniques (bottom right) for nine purple cotton fibers. 
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CHAPTER 3 

MULTIVARIATE CLASSIFICATION MODEL TRANSFER OF UV-

VISIBLE DATA FROM ACRYLIC FIBERS WITHOUT STANDARDS 

 

ABSTRACT 

Ultraviolet (UV)-visible microspectrophotometry has been used for decades as a 

means for discriminating metameric fibers in forensic casework. Recent studies have 

shown that multivariate classification techniques are an effective tool for characterizing 

such fibers. The ability to transfer multivariate classification models between laboratories 

could save time and resources in forensic analyses. However, issues transferring models 

of this type from one laboratory to another can arise as a result of differences in sample 

preparation, environmental conditions, and instrumental signal response.  

In this study, UV-visible absorbance spectra of 12 blue acrylic fibers were 

examined at five separate locations including three academic research laboratories and 

two forensic laboratories. The data received from these facilities were analytically 

assessed in three manners. Multivariate classification models were initially constructed 

on each individual laboratory’s dataset to evaluate intra-laboratory variability between 

samples. In a second subset of the study, discriminant analysis was performed after 

merging all data collected in the study. Lastly, the transferability of classification models 

was assessed by predicting class membership of samples analyzed at a single laboratory 

using models built from the spectra collected at the four remaining locations. 
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Principal component analysis (PCA) followed by linear discriminant analysis 

(LDA), quadratic discriminant analysis (QDA), or support vector machine discriminant 

analysis (SMV-DA) was used to evaluate the agreement of results among the 

laboratories. An average classification accuracy of 93.2% was found after training the 

discriminant analysis models using data collected at four laboratories and using the 

information collected at the fifth laboratory as an external test set. For comparison, intra-

laboratory studies carried out produced an average classification accuracy of 96.3%. The 

reduction in the discriminative abilities of the transferred models was likely due to the 

differences in spectral noise and peak intensities experienced between laboratories. On 

the whole, the errors generated by QDA were lower than those resulting from LDA and 

SMV-DA. 

1. INTRODUCTION 

Ultraviolet-visible (UV-Vis) microspectrophotometry (MSP) is an established 

technique for comparing metameric pairs of fibers in forensic casework.1,2 MSP can be 

used following microscopy without having to remove small amounts of fibers from the 

microscope slides, providing a great convenience for examiners of trace evidence. A 

decision regarding the likelihood two fibers originated from the same source is often 

formed by a simple visual examination of the normalized or differentiated absorbance 

spectra. This process may be complicated by the fact that during the course of an 

investigation, numerous fibers of interest may be collected, and typical MSP protocols 

call for absorbance spectra to be collected at a minimum of five locations along each 

fiber to produce representative mean spectra and standard deviations.3 Statistical software 

packages utilizing pattern-recognition techniques can be used for more robust analyses of 



www.manaraa.com

 

72 
 

fibers, and are especially useful in instances where one wishes to examine a multitude of 

spectra simultaneously.4  

A subdivision of the pattern recognition methodology includes multivariate 

classification techniques such as linear discriminant analysis (LDA), quadratic 

discriminant analysis (QDA), and support vector machine discriminant analysis (SMV-

DA). These popular supervised methods of classification have been previously combined 

with optical spectroscopy techniques to study various forensic analytes of interest such as 

gunshot residue,5 bodily fluids,6,7 drugs8,9 and ink.10-12 The objective of LDA, introduced 

by Fisher13 in 1936 (multi-class version developed by Rao14 in 1948), is to find a linear 

projection which best separates the classes of objects studied. LDA calculations assume 

the data is normally distributed, and the covariance (a descriptive measure of the 

association between variables) matrices are equal. In instances of unequal covariance, the 

classes are best separated using quadratic discriminant functions generated with QDA. 

Originally developed for binary classification problems, the more robust SVM methods 

are able to handle both linear and nonlinear classification tasks through the use of kernels 

(e.g., polynomial or radial basis function). The kernel functions are used to reallocate the 

observations into a higher dimensional space. Once a hyperplane maximizing the distance 

between classes is constructed in high dimensional space, the function is returned to the 

original space appearing as a nonlinear boundary. The reader is referred to the numerous 

resources available covering supervised learning techniques for more in-depth 

discussions covering LDA, QDA, and SMV-DA.15-18 

Ideally, the classification models built using LDA, QDA, or SMV-DA could be 

transferred from one instrument to another. This would be useful for routine 
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discriminations of textile fibers and save forensic laboratories the time and cost required 

to construct a new model each time new samples are introduced. Instrumental transfer of 

classification models, however, can be challenging due to differences in sample 

preparation, instrumental response, and environmental conditions experienced between 

laboratories. Although the issue of transferability of calibration models has been studied 

extensively,19-23 much less attention has been focused toward transferring classification 

models.24 

This research has three objectives: (a) to conduct interlaboratory experiments for 

the evaluation of decision making in forensic fiber examinations by MSP; (b) to evaluate 

intra-laboratory variability, inter-laboratory agreement, and error rate performance in 

designed experiments; and (c) to investigate the application of multivariate statistical 

measures for comparisons of UV-Vis spectra of fibers. To address these objectives, the 

agreement between classification accuracies among five laboratories and the transfer of 

multivariate classification models between the laboratories was evaluated using LDA, 

QDA, and SMV-DA for discrimination of spectra taken from a set of twelve blue acrylic 

fibers. 

2. EXPERIMENTAL 

2.1 Materials 

Acrylic samples were donated from commercial sources in the southeastern 

United States. Procedures from the Scientific Working Group on Materials Analysis 

Fiber Subgroup (SWGMAT) were followed.3 In the five laboratories, individual fibers 

were cut using a razor blade and positioned on glass or quartz microscope slides using 

micro-tweezers. The fibers from each exemplar were removed and mounted on the slides 
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with coverslips using either spectral grade Permount mounting media (Fischer 

Scientific, Fairlawn, NJ) or glycerol. To assess apparent variations in dyeing depth, ten 

replicate spectra of each fiber were obtained at different locations along the length of the 

fiber. 

2.2 Instrumentation 

Spectral measurements in this study were made using slightly different 

instruments from the same company, and with slightly different instrumental settings. 

Laboratory one obtained spectra with a CRAIC QDI 302 UV-Vis 

microspectrophotometer with a Carl Zeiss (Jena, Germany) Axioscope A1 and a 1.3 

megapixel digital imaging system with CCD cooling. The spectral range was 400 to 800 

nm with a resolution of 0.5 nm. 

Analysis in laboratory two was conducted with a CRAIC 380 Perfect VisionTM 

UV/Vis microspectrophotometer with a Carl Zeiss (Thornwood, NY) Axioscope A1. 

Fibers were mounted on glass slides using Permount® (Fisher Scientific, Fair Lawn, NJ) 

and a coverslip. The spectral data acquisition range was 400 to 800 nm with a resolution 

of 0.5 nm. 

Spectra in laboratory three were taken using a CRAIC Quantum Detection 

Instrument (QDI) 1000 microspectrophotometer operated in transmission mode with a 

xenon light source, a Carl Zeiss Axioscope A1 microscope, and a megapixel cooled 

charge coupled detector. A 15× collecting objective was used to focus an area within the 

diameter of the fibers. UV-Vis spectra of textile fibers were produced by collecting an 
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average of 100 scans over the spectral range of 200 to 850 nm at a 10 nm bandwidth and 

4 ms integration time. 

Spectra were collected in laboratory four using a CRAIC 20/20 Perfect VisionTM 

MSP version 1.1.0. The instrument was operated in transmission mode using a 40× 

collection objective with a detector integration time of ~8.6 ms. The spectrum of each 

fiber was calculated by averaging 10 scans over a 250 to 820 nm spectral region.  

Laboratory five acquired spectra using a CRAIC 2000 microspectrophotometer 

(CRAIC Technologies, San Dimas, CA) in transmitted light mode at 150× magnification. 

Calibration of the spectrometer with NIST traceable standards was performed before each 

use, along with Köhler illumination for the microscope. Autoset optimization, a dark 

scan, and a reference scan were employed prior to each sample scan. MSP data was 

collected over the wavelength range of 350 to 800 nm. 

2.3 Data Analysis 

Analysis of the data obtained from the five laboratories was performed using 

MATLAB version 8.3 (The MathWorks, Natick, MA). The PLS_Toolbox version 7.8.2 

(Eigenvector Research, Wenatchee, WA) was the source of the preprocessing routines 

used in this study. LDA and QDA classifiers were generated using the “fitcdiscr” routine 

located in the statistics toolbox in MATLAB. The SMV-DA algorithms used in this study 

can be found as part of the Library for Support Vector Machines (LIBSVM) developed 

by Chang and Lin.25 For SMV-DA, multiple kernels and parameters were tried, and those 

resulting in the best average classification accuracies were utilized. The discussed results 

in the intra-laboratory study were collected using the C-SMV-DA algorithm with the cost 

parameter set to one. Combined laboratory studies were carried out using the nu-SVM 
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algorithm with a nu-parameter of 0.1. For intra-laboratory studies, a 2nd order polynomial 

kernel was used, whereas a linear kernel was used for fused data. Using LDA, QDA, and 

SMV-DA, three distinct data analysis procedures were performed and are described 

below. 

2.3.1 Intra-laboratory evaluation 

The datasets received from all laboratories, each containing 120 spectra (10 

replicate spectra for each of 12 samples), were treated separately using the same 

preprocessing techniques. The spectra were first truncated to a wavelength range of 400 

to 800 nm. Each sample spectrum was then subjected to Savitzky-Golay26,27 smoothing 

by fitting a 2nd order polynomial to a moving window of 21 points. Following smoothing, 

a 2nd order weighted least squares baseline correction was performed. Finally, the data 

was mean-centered, a preprocessing technique typically recommended when performing 

PCA. In mean-centering, the average of each column is calculated and subtracted from all 

of the elements in that column. 

After preprocessing, principal component analysis (PCA) was used to reduce the 

dimensionality of the data. PCA is used to calculate new uncorrelated variables called 

principal components (PCs), which are linear combinations of the original spectral 

variables.28 Increasing amounts of variation in data are obtained with successive PCs. 

Contained within each PC are the scores (the projections of the spectra) and the loadings 

(the weights of the original variables). A scree plot, which plots the amount of variance 

captured by each PC, was used to select those PCs for removal which appear to capture 

noise rather than variations due to group differences. The retained PC scores were then 

subjected to LDA, QDA, and SMV-DA. 
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The predictive performances of the discriminant analysis models created in this 

study were determined by internal validation using the stratified 10-fold method. This 

method of cross-validation was chosen to assess our inter-laboratory models prediction 

ability, because it is often a good compromise between bias and variance.15 In stratified 

10-fold cross-validation, the data is partitioned into 10 nearly equal sized parts with 

approximately the same number of samples per class (i.e., per fiber). The discriminant 

functions are then calculated using the information from all but one of these subsets, and 

the left-out portion is used to test the classifier. This process is repeated until each subset 

of samples has been used for testing. The classification accuracy (the number of correctly 

classified samples divided by the total number of samples examined) for this part of the 

study was calculated after 100 iterations of stratified 10-fold cross-validation. 

2.3.2 Discrimination of combined datasets 

The methodology used to evaluate classification models built on merged data 

from all five laboratories is shown in Figure 3.1. The data received from each laboratory 

was fitted to the same wavelength axis by using a spline interpolation method that creates 

interpolated values by fitting a 3rd order polynomial to the neighboring points.29 Feature 

values in all three data sets were interpolated in the region of 400 to 800 nm due to its 

commonality in all data received from each institution. The splined datasets were given a 

new wavelength spacing of 0.3407 nm, as this was the lowest interval used for data 

collection at the five laboratories. Following interpolation of the feature axis for each 

individual laboratory’s data, the datasets were combined into one matrix for further 

analysis. 
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Prior to any further processing, approximately 20% of the data was partitioned out 

in a stratified manner to generate an internal test set containing samples from all classes 

and all laboratories. Thus, all samples (fiber spectra) in the internal test set will also have 

had replicate samples in the training set collected from that same laboratory. The training 

set contained 60% of the original amount of data. The remaining 20% was used as a 

validation set for the selection of the number of significant principal components to be 

used for testing. The selection of which samples would comprise the training set was 

done using the Kennard-Stone algorithm.30 The goal of this method is to select the 

samples which constitute the boundaries in each class and are the most representative. 

All spectra in the training and test sets were again subjected to the smoothing and 

baseline correction techniques described in the previous section. When dealing with 

combined datasets, the data was also treated using autoscaling and a standard normal 

variate (SNV) transformation. Autoscaling is performed by subtracting the mean spectral 

intensity 𝑋̅ at wavelength j in spectrum i and dividing by the standard deviation s of all 

values at that wavelength. 

𝑋𝑖𝑗,𝑎𝑢𝑡𝑜 =
𝑋𝑖𝑗 − 𝑋𝑗

𝑠𝑗
 (1) 

The result of autoscaling is a matrix in which each column has a mean of zero and a 

standard deviation of one. The purpose of SNV is to remove the differences in the slope 

of the spectra which may result from scattering.31 The transformation is applied to each 

individual spectrum using the following equation: 
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𝜒𝑖𝑗,𝑆𝑁𝑉 =
𝑋𝑖𝑗 − 𝑋𝑖

√∑ (𝑋𝑖𝑗 − 𝑋𝑖)2𝑓
𝑗=1

𝑛 − 1

 
(2) 

where 𝑋𝑖𝑗,𝑆𝑁𝑉 is the SNV corrected absorbance, 𝑋𝑖𝑗 is the original absorbance for the 

same element, 𝑋𝑖 is the mean, and n is the number of wavelength variables. To preserve 

the integrity of the test set, autoscaling and SNV were performed on the training set, and 

the parameters used, such as the column means, spectral means, and standard deviations 

were then applied to the preprocessing of the test and validation sets. 

Following preprocessing, PCA was used to reduce the dimensionality of the 

training set, and the samples in the validation set were projected into the resulting PC 

space. After repeating this process using anywhere from one to ten PCs, the number of 

significant PCs to use in the final training model before testing was selected based on the 

number of misclassifications of samples in the validation set. The final classification 

accuracy and standard deviation was calculated as the average of 100 iterations of this 

process. 

2.3.3 Transfer of classification models between instruments 

This part of the study only differs from the portion of the experiment mentioned 

previously in the manner in which the training and test sets were selected. The training 

set was built using splined spectra from only four of the five laboratories. The 

interpolated spectra from the remaining laboratory were used as an external test set. 

Following preprocessing, five separate classification models of each type were built, 

allowing datasets from each of the laboratories to be used as the external test set. Because 

the test sets were not selected at random, there was no need to iterate these processes. 
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3. RESULTS AND DISCUSSION 

3.1 UV-visible spectra  

Twelve blue acrylic fiber samples were analyzed at five separate laboratories 

using UV-Vis MSP and are shown in Figure 3.2. In general, each sample was very 

similar in color to at least one of the other remaining samples in the dataset. One 

exception is fiber 114 which is a visually distinguishable shade of blue. As expected, 

sample 114 was also one of the least misclassified samples throughout the study. 

Averaged UV-Vis spectra for each of the 12 fibers obtained at all five laboratories are 

shown in Figure 3.3. The majority of the fibers in this study can be discriminated upon a 

simple visual examination of their absorbance spectra based on the locations and sizes of 

the peaks, troughs, and shoulders. Using this methodology, an initial survey of those 

spectra which could be difficult to discriminate was carried out. For example, absorbance 

spectra of samples 086, 098, 112, and 145 have peak locations at approximately 650 nm. 

A shoulder located between 600 and 620 nm is also characteristic of these samples, 

though it may be possible in some instances to discriminate the samples based on the 

intensity of the shoulder. The similarities in the absorbance spectra of all four samples are 

seemingly due to these fibers containing the same blue dye, CI Blue 6. In addition, 

samples 086 and 112 contain all three of the same cationic dyes, as indicated in Table 

3.1. Blue acrylic sample fibers 087 and 088 also appear to share similar spectra, as do 

samples 113 and 114. Finally, it should be noted that the lowest absorbing and most noisy 

spectra are associated with fiber sample 092. Because sample 092 was the only fiber dyed 

using the cationic dye, CI Blue 60, it is believed that this dye is responsible for the lack in 

color strength displayed by the fiber. 



www.manaraa.com

 

81 
 

3.2 Intra-laboratory evaluation 

Dimensionality reduction of the spectral data is often a necessary step before 

performing discriminant analysis. To examine the discriminative ability of each 

laboratory separately, PCA was used prior to LDA, QDA, and SMV-DA. By examining 

the percentage of variation in the spectra captured by each PC, it was determined that 

either four or five PCs, depending on the dataset, would be sufficient to build the 

discriminant analysis models. The PCs used represent 99.83%, 99.94%, 99.84%, 98.35%, 

and 99.49% of the data in laboratories one through five, respectively. Most of the 

information used to discriminate the 12 blue acrylic fibers is contained within the first 

two PCs as shown in Figure 3.4. The ellipses around groups of spectra represent, with 

95% confidence, distances that are statistically equidistant from the group mean. 

The proximity of the groups of similar spectra mentioned in the previous section 

is also evident in Figure 3.4. Of particular significance is the amount of overlapping that 

occurs between samples 086 and 112. As seen in Table 3.2, these two samples could not 

be distinguished (accuracies of 80% and 58.2% for samples 086 and 112, respectively) 

through the use of LDA on spectral data from laboratory 3. Classification accuracies of 

100% were obtained on these samples using QDA, however. The decision boundaries 

generated by LDA and QDA for 086 and 112 are shown in Figure 4 in the coordinates of 

PCs three and four (the PCs which show the most discrimination between these two 

classes). The case of equal covariance between classes, which is assumed by LDA, does 

not hold true in the laboratory three dataset. The result of this misassumption is a poor 

decision boundary in a case where the classes are clearly separable. Because unequal 

covariance is assumed in QDA, an optimal boundary separating 086 and 112 is drawn. A 
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reexamination of Figure 3.4 shows the samples responsible for the faulting of LDA in 

this situation. The variance in sample 099 is much greater than those of the remaining 

eleven samples. By not including the covariance for 099 when calculating the pooled-in 

covariance for LDA, a better separation is achieved as shown in Figure 3.5. An even 

better fit could be made by removing 098, the group with the second largest variance. 

The results of the intra-laboratory study suggest that the classes of fibers are best 

separated using classification techniques useful for solving non-linear classification 

problems. The best results were seen with QDA which gave a correct classification rate 

of 96.3%. With a classification accuracy of 95.9%, SMV-DA using the quadratic 

polynomial kernel was only slightly lower. Although, the lowest accuracies were 

obtained using LDA at 94.8%, the technique gave the most consistent results across all 

five laboratories. The measured standard deviations between laboratories were ±2.0%, 

±2.9%, and ±4.1% for LDA, QDA, and SMV-DA, respectively. It was clear after using 

SMV-DA on all sets of data in this study that when used correctly SMV-DA can be a 

very powerful discriminatory tool. However, the results varied to a great extent 

depending on the parameters used to train the support vectors. It is recommended that 

these parameters be optimized using a “grid search” for every set of data that is to be 

examined.25  

3.3 Discrimination of combined datasets 

The purpose of the second portion of the study was to determine how well the 

fibers could be discriminated by including data obtained at all five laboratories in the 

training and test sets. Because the data received from each institution was collected at 

differing wavelengths and wavelength intervals, a spline interpolation was used to 
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generate three new sets of data with the same wavelength region (400 to 800 nm) and 

intervals (0.3407 nm). It should be noted that the splined datasets were compared to the 

original datasets by once again performing intra-laboratory discriminant analyses on the 

splined datasets. No significant differences were found between the intra-laboratory 

results of the splined data and those obtained from the original data. After all sets of data 

had been placed on the same wavelength axis, preprocessing was carried out in the form 

of smoothing and baseline correction. Column (variable) scaling was performed to 

eliminate inter-laboratory variations in signal intensities. Finally, row scaling by SNV 

transformation is used to eliminate the changes in sample-to-sample peak locations.  

After splining and fusing five datasets from each of the laboratories, the resulting 

matrix included 600 total spectra. Because a much greater amount of data is involved in 

the interlaboratory studies (50 replicate spectra for each fiber as opposed to 10 in the 

intra-laboratory studies), the decision was made to use training, validation, and test sets. 

By initially removing 120 spectra by stratified partitioning for later use as a test set, it 

was ensured that the same number of samples would be tested on in the analysis of fused 

data as well as when attempting to transfer the model to one instrument. To make sure the 

samples which are most representative of the data as a whole are included in the training 

set, the Kennard-Stone algorithm was used. Conversely, this means that the validation set 

is likely to be overoptimistic since the samples selected for it are known to fall within 

those of the training set. Nevertheless, the validation set in this study is only used for the 

purpose of model selection, and the inherent bias is not likely to influence the number of 

components used to train the final model.  
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Classification models were built using the LDA, QDA, and SMV-DA algorithms 

on the training set containing 360 (72 from each of the five laboratories with 30 total 

samples per class) pretreated spectra. The optimal classification models chosen from the 

validation results were then applied to the test sets where each spectrum was assigned to 

one of the 12 classes. Average classification accuracies after 100 iterations of this process 

in its entirety were 94.6±1.9%, 96.1±1.3%, and 91.9±2.1% for LDA, QDA, and SMV-

DA, respectively. Table 3.3 shows the extent to which the 12 fibers in this study were 

misclassified using the “best” method for this set of data, QDA. There was once again a 

significant inability of the model to discriminate between samples 086 and 112, two 

fibers containing the same three cationic dyes. This scheme, however, was very useful in 

achieving its objective of obtaining similar classification accuracies to those of the intra-

laboratory studies.  

3.4 Transfer of classification models between instruments 

The goal of the final portion of the study was to determine how well blue acrylic 

fibers could be discriminated using models built on data from instruments separate from 

the one used as the test set. To do this, discriminant models were built using data from 

four laboratories, and the data from one remaining laboratory was used as an external test 

set. This process was repeated four more times allowing each laboratory’s data a chance 

to be the test set, while the other four laboratories comprised the training set. The results 

of each trial are displayed in Table 3.4. As expected, the accuracy of predicting samples 

from a laboratory in which no samples had been included in the training set was lower 

across the board compared to the other processes in this study. The average classification 

accuracies obtained after attempting to transfer LDA, QDA, and SMV-DA models to an 
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external laboratory were 92.0±3.2%, 93.2±5.3%, and 88.7±6.0%, respectively. The 

poorest performances of classification models occurred when trying to predict samples 

from laboratory four based on the data from laboratories one, two, three, and five. The 

poor signal-to-noise ratio of the spectra from sample 092 led to multiple 

misclassifications with that group and was a significant contributor to the lower 

classification accuracy obtained when using laboratory four as a test set. The same 

sample was also responsible for multiple misclassifications in both the intra-laboratory 

and combined dataset studies. 

The choice of preprocessing techniques and the order in which they are performed 

is critical to set all laboratories on as close to the same scale as possible. Figure 3.6 shows 

how the ability to transfer classification models is influenced by each preprocessing step. 

The five step preprocessing technique of spline interpolation, smoothing, baseline 

correction, autoscaling, and standard normal variate transform worked the best on four 

out of the five laboratories tested with the one exception being laboratory five. QDA 

model testing on laboratories four and five saw the most improvement with respective 

gains in classification ability of 17.3% and 39.2%. Such a sizeable increase in 

discrimination was seemingly due to the noticeable scaling differences in Figure 3.3. The 

spectra obtained from laboratory four gave, in many instances, significantly lower 

absorbance values as compared to those in laboratories one, two, and three, and contained 

significantly more noise. Laboratory five gave noticeably low absorbing spectra as well. 

As a consequence, some peak shapes (e.g., samples 086 and 112) are slightly different 

when compared to those same samples collected at the other four laboratories. The 

preprocessing used in this study does not correct for differences in peak shape, and 
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therefore would explain why no gain in discrimination power was gained using these 

preprocessing steps. Fiber spectra from laboratories one, two, and three appear to show a 

high degree of correlation between datasets. It is therefore not surprising that scaling had 

less of an impact on these sets of data, since they were not only closest to the mean of the 

data as a whole, but there were also existing similar samples in the training set. 

4. CONCLUSION 

UV-Vis microspectrophotometry is widely accepted as a valid analytical approach 

for characterization of trace evidence fibers. The reliability of a spectrophotometer in a 

specific laboratory is dependent on whether it has functional capability and performance 

that meet the requirements of the task. Qualification of a spectrophotometer for operation 

typically involves testing for wavelength accuracy and reproducibility, photometric 

accuracy, presence of stray light, baseline flatness, stray light levels, stability, and 

linearity. These issues from the viewpoint of quality control all involve defining 

performance characteristics that are targeted to insuring reliability, and comparability of 

measurements among laboratories. The laboratories involved in this study were all 

facilities with a well-documented history of using MSP for fiber characterization.  

Transfer of calibration models, particularly in near infrared spectroscopy, has 

been a topic of continuing discussion in the literature, with the focus on methods 

involving robust calibration and spectral preprocessing to correct for inter-laboratory 

variability (e.g., reference 23). In the present study, classification models based on QDA 

in separate laboratories produced an average classification accuracy of 96.3%, an 

outcome that is indicative of good operational control of methodology and practice within 

each laboratory. Little change was observed in discriminating ability when laboratory 
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data sets were fused together and used to predict classification over all samples. 

Permutations were also performed to combine data from four of the laboratories for 

classification of the same samples from the fifth laboratory used as an external test set. 

The average classification accuracy of the best method used, QDA, was slightly lower at 

93.1%. Upon detailed visual inspection of the spectra, this observed loss in classification 

accuracy was attributed to noisy spectra, and differences in intensity or peak shape. 

Alternative scaling techniques should continue to be examined for the purpose of 

eliminating these factors which cause accuracy reduction in transferred classification 

models. 
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Table 3.1 Cationic dye composition 12 blue acrylic fibers examined. ‘Y’ indicates 

presence of dye. 

 
 Cationic dye 
Fiber Blue 

3 

Blue 

41 

Blue 

60 

Blue 

147 

Red 

18 

Red 

29 

Red 

46 

Yellow 

21 

Yellow 

28 

Yellow 

29 086 Y    Y    Y  
087  Y     Y  Y Y 

088  Y     Y  Y  

091  Y    Y  Y   

092   Y   Y   Y  

095    Y  Y   Y  

098 Y   Y       

099    Y   Y  Y  

112 Y    Y    Y  

113  Y    Y   Y  

114  Y   Y    Y  

145 Y      Y  Y  
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Table 3.2 Comparison of classification accuracies between laboratories by method. 

 

    Percent of correctly classified spectra by sample 

Method Lab. Acc. (%)  SD 086 087 088 091 092 095 098 099 112 113 114 145 

LDA 1 95.9 0.40 89.2 100 100 91.9 100 100 100 100 70 100 100 100 

 2 97.3 0.53 80 100 100 100 100 100 100 100 91.2 100 100 100 

 3 94.0 0.31 80 100 100 100 100 100 100 90 58.2 100 100 100 

 4 92.0 0.83 88.8 100 100 61.6 75.6 91.4 100 100 100 100 100 100 

 5 94.9 0.52 70 98.9 100 100 100 98.3 100 100 81.5 90.1 100 100 

QDA 1 99.2 0.43 100 100 100 90 100 100 100 100 100 100 100 100 

 2 95.3 0.51 87.6 100 100 100 100 100 100 100 55.8 100 100 100 

 3 98.2 0.30 100 100 100 100 88.3 100 100 100 100 90 100 100 

 4 91.8 0.89 100 95.4 100 72.8 81 79.8 100 100 81.9 90.1 100 100 

 5 97.2 0.56 92.5 100 100 100 100 100 100 100 73.8 100 100 100 

SMV-DA 1 99.2 0.41 100 100 100 90.9 100 100 100 100 100 100 98.9 100 

 2 98.3 0.26 89.9 100 100 100 100 100 100 99.9 90.3 100 100 100 

 3 98.3 0.46 99.3 100 100 100 100 100 90.9 90 99.3 100 100 100 

 4 88.8 1.02 90.4 99.5 90 33.7 91.3 79.6 100 100 100 100 90.2 98.8 

 5 94.9 1.00 70 98.9 100 100 100 98.3 100 100 81.5 90.1 100 100 
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Table 3.3 Confusion matrix resulting from QDA on test set composed of combined 

laboratory data. Percentages of correctly classified spectra are in bold. Percentages 

equaling zero are omitted. 

 

 

 

 

 

 

 
Actual class 

Predicted class 086 087 088 091 092 095 098 099 112 113 114 145 

086 85.4        14.6    

087  100           

088  0.1 99.9          

091    96 0.3 3.4    0.3   

092    2.3 92.3 5.4       

095    2.2 2.8 95       

098       100      

099        100     

112 15.8        84.2    

113      0.2    99.8   

114           100  

145            100 
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Table 3.4 Classification accuracies resulting from LDA, QDA, and SMV-DA models 

trained using datasets from four laboratories and tested on a fifth laboratory’s dataset. 

 

Training lab. Testing lab. LDA (%) QDA (%) SMV-DA (%)  

2,3,4,5 1 94.2 97.5 87.5 

1,3,4,5 2 93.3 95.8 86.7 

1,2,4,5 3 95.0 97.5 99.2 

1,2,3,5 4 87.5 86.7 85.0 

1,2,3,4 5 90.0 88.3 85.0 
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Figure 3.1 Schematic of the methodology used for the classification of combined 

laboratory datasets.  
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Figure 3.2 Microscopic images of 12 blue acrylic fibers under 40× magnification. 
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Figure 3.3 Mean absorbance spectra of 12 blue acrylic fibers collected at five 

laboratories. 
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Figure 3.4 PCA scores plot of 12 blue acrylic samples (10 replicates each) collected at 

laboratory three. 
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Figure 3.5 Decision boundaries used to separate samples 086 and 112 generated by QDA 

(solid line), LDA using pooled-covariance from all 12 samples (dashed line), and LDA 

with sample 099 excluded from pooled-covariance (dotted line). Class means are 

indicated by ‘X’.  
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Figure 3.6 Misclassification percentages of LDA resulting from transfer of classification 

models to five laboratories. Each ‘o’ label involves that method of preprocessing 

combined with all those, if any, to the left of it.  
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CHAPTER 4 

SUPERVISED MACHINE LEARNING IN PLAYABILITY 

DETERMINATIONS OF POLYESTER-URETHANE MAGNETIC 

AUDIO TAPES 

 

ABSTRACT 

As magnetic audio tapes age, the playability of the tapes can be affected by 

various chemical and physical degradation processes. The extent that a tape is degraded, 

however, is often difficult to observe without actually playing the tape. Attempting to 

play an extensively degraded tape can result in damage to the instrument used to play the 

tape as well as the tape backing. Recent work has focused on less destructive methods for 

determining the degree to which a tape is degraded before playing. The development of 

such methods would allow conservationists to predetermine if a tape should be subjected 

to a restoration process such as baking and eliminate any further damage from occurring. 

In this study, attenuated total reflectance (ATR) Fourier transform infrared (FT-

IR) spectroscopy was used as a rapid and objective method for determining the 

playability of polyester-urethane magnetic tapes. A collection of 95 tapes was used to 

generate chemometric models based on partial least squares discriminant analysis (PLS-

DA), support vector machine discriminant analysis (SVM-DA), artificial neural networks 

(ANN), naïve Bayes classification (NBC), and decision trees (DT). We were able to 

correctly classify a separate collection of 50 tapes with greater than 90% accuracy using 

PLS-DA, SVM-DA, and ANN. 
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1. INTRODUCTION 

Magnetic tape was patented by Fritz Pfleumer in Germany in 1928. In the 1930s, 

the German company, AEG, utilized Pfleumer’s invention to develop the Magnetophone, 

one of the world’s first practical tape recorders. For the next several decades, magnetic 

audio tape was a favored recording medium for the entertainment industry and for 

personal use. Though magnetic tape recording has largely been replaced by digital 

recording in the 21st century, cultural heritage institutions in the United States have 

amassed collections totaling greater than 46 million tapes in various forms (reel to reel, 

VHS, DAT, cassette, etc.).1 As tape aging progresses, they are susceptible to multiple 

chemical and physical degradation processes that could potentially render them 

unplayable. Because much of the information on magnetic tapes is now being digitized, a 

decision must be made on the tapes playability beforehand, either by visual inspection or 

by attempting to play the tape. The latter method is not ideal due to the potential harm 

that can result. If a tape is sufficiently degraded, it can fall-apart or stick to the playback 

device. When this occurs, valuable data may be lost, and the playback device may need 

extensive maintenance before being used again. With approximately 40% of all tapes 

being held in U.S. institutions in unknown condition,1 an easy-to-use, reliable, and non-

destructive method for determining the playability of these tapes would be beneficial and 

would allow archivists to identify tapes which should be restored using a process such as 

the baking method.2,3 

Infrared (IR) spectroscopy meets the previously mentioned criteria and has been 

used previously to study magnetic audio tapes with “sticky shed syndrome.”3,4 Magnetic 

tape components which can be studied in the IR region include the finely dispersed 
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coating of magnetic oxide particles and polymeric binder materials. The magnetic 

particles, cobalt-doped iron oxide (Fe2O3) or chromium (IV) oxide (CrO2), are 

responsible for sound and image reproduction, whereas the polymeric component 

determines the longevity of the tape along with other performance characteristics.5 Some 

tapes have an additional third layer containing carbon particles which are dispersed on a 

polymeric material. This extra layer of support improves winding characteristics and 

reduces static build-up.6 Since the 1970s, the most commonly used substrates in the 

construction of magnetic tapes belong to a class of polymers called polyester-urethanes.7 

The tapes may consist of one or multiple polyester-urethanes to achieve the desired 

properties. Some common degradation pathways for magnetic tape include hydrolysis of 

the polyester-urethane elastomers, binder oxidation, and peroxide decomposition.5,6,8-11 

Examining the differences between IR spectra of degraded and non-degraded 

magnetic tape samples can be achieved using multivariate statistics. Algorithms which 

are capable of handling large amounts of data and have the ability to adjust their 

parameters (i.e., learning algorithms) as reference tapes are made available are logical 

choices for determining if a tape is degraded to the extent that it becomes non-playable 

using common tape playing machines. Because IR spectroscopy is already widely used in 

cultural heritage institutions and machine learning software is readily available, 

collection custodians potentially will be able to carry out non-invasive tape evaluations in 

a fast manner by combining the two approaches. 

The objectives of this study were as follows: (1) determine if attenuated total 

reflectance (ATR) Fourier transform (FT) IR spectroscopy is a suitable technique for 

distinguishing playable from non-playable magnetic tapes, and (2) compare performance 
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of different models based on partial least squares discriminant analysis (PLS-DA), 

support vector machine discriminant analysis (SVM-DA), artificial neural networks 

(ANN), decision trees (DT), and naïve Bayes classification (NBC). 

2. EXPERIMENTAL 

2.1 Samples 

The magnetic audio tapes obtained for this study were used either to train 

classification models or as part of an external dataset to test the models after construction. 

The training set included 95 polyester-urethane-based quarter-inch reel-to-reel tapes. 

These samples were contributed by the Motion Picture Broadcasting and Recorded Sound 

Division (MBRS) at the Library of Congress (Washington, DC). For model testing, 38 

quarter-inch tapes from the same MBRS collection were utilized along with an additional 

12 tapes supplied by the University of Maryland (College Park, MD). Though brand and 

model information was sometimes found on the box in which the tapes were contained, 

or on the tape hub, this information cannot be considered reliable due to common 

rehousing practices. Only tapes in the original unopened packaging could be reliably 

associated with the brand and model identifiers. Tapes in this state would not have any 

recorded information on them. 

2.2 Instrumentation 

ATR FT-IR spectra of the magnetic side of all tape samples were collected using 

a Nexus 670 FT-IR (Thermo-Nicolet, Madison, WI) running Omnic version 8.2. The 

spectrometer was equipped with a Thunderdome ATR accessory (Thermo Spectra Tech, 

Inc., Shelton, CT) with a germanium crystal and an incident angle of 45°. IR detection 

was carried out using a deuterated triglycine sulfate (DTGS) detector.  
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Sections of tape were placed without preparation onto the germanium crystal. The 

tape was covered with a ~0.1 mm thick Mylar film to protect the tape surface from the 

metal anvil of the ATR pressure tower. In addition, a ~1 mm thick steel plate was placed 

on top of the Mylar film to disperse the pressure. A total of 20 replicate spectra of each 

tape were collected. Ten spectra were collected ~50 cm from the beginning of the tape 

with ~ 3 mm distances between the scanning areas on the tape. This process was repeated 

at ~100 cm from the beginning of the tape to obtain the remaining ten replicates. The 

spectral range investigated was 4000-500 cm-1 with 32 scans at 4 cm-1 resolution. 

FT-IR spectra for the 95 tape training set were obtained by a single analyst in 

2011, while spectra for the 50 tape test collection were obtained by two separate analysts 

in 2013. 

2.3 Playability of Magnetic Tape Samples 

Following ATR FT-IR analysis, attempts were made to play the tapes using a 

Scully 280 tape player (Scully Recording Instruments, Bridgeport, CT) by an audio 

engineer at MBRS. This subjective measurement made using a tape player is currently 

the standard approach for determining the playability of magnetic tapes.6 The 

playabilities of the tapes were determined after attempting to pass the tape from one 

wheel to the next. Magnetic tapes were determined to be unplayable if there was 

noticeable friction between the tape player and any one of the six stationary guides, 

audible squealing noises were produced, material from the tape shed to the player guides, 

or fast-forward/rewind transitions were slowed due to increasing friction. 
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2.4 Data pretreatment 

All preprocessing steps were performed using MATLAB version 8.1 (The 

MathWorks, Natick, MA). Each FT-IR spectrum was first truncated to a spectral region 

of 1750 to 950 cm-1 (416 variables). Following truncation, a least-squares polynomial 

smoothing of the signal was performed using the Savitzky-Golay (SG) algorithm with a 

4th order polynomial and 5-point moving window.12,13 A standard normal variate (SNV) 

transformation was used to remove slope differences in the FT-IR spectra resulting from 

light scattering.14 Following SNV transformation, the data was mean-centered. Mean-

centering involves subtracting the average observation of a single feature from all 

observations made at that feature and is typically recommended when performing 

principal component analysis (PCA) or PLS. 

2.5 Machine Learning 

PLS-DA was performed using the PLS_Toolbox version 7.0.3 (Eigenvector 

Research, Wenatchee, WA). ANN, DT, NBC, and SVM-DA models were developed 

using the neural network and statistics toolboxes in MATLAB. 

2.5.1 Partial least squares discriminant analysis 

PLS-DA is a supervised classification technique based on algorithms for partial 

least squares (PLS) regression.15 In PLS-DA, the dimensionality of the data is reduced 

according to: 

𝑋 = 𝑇𝑃𝑇 + 𝐸 (1) 

𝑌 = 𝑈𝑄𝑇 + 𝐹 (2) 

where X is a matrix for model training containing the instrumental responses of 1900 

samples (20 replicate spectra of 95 tapes) at 416 separate wavenumbers, Y is a categorical 
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vector containing the group memberships of the tapes determined by the playability 

testing method previously described, T and U are the resulting scores matrices, and PT 

and QT are the orthogonal loadings matrices. Finally, contained in matrices E and F is the 

information not explained by the scores and loadings matrices of X and Y, respectively.  

The factors, also called latent variables (LVs), used to decompose X and Y are 

created in such a way as to maximize the variance between spectra that is relevant for 

predicting classes. To avoid the inclusion of instrumental noise into the model, not all 

LVs are included in PLS-DA model building. The number of LVs to be retained was 

based on the error resulting from stratified 10-fold cross validation of all samples 

included in the calibration dataset. Because PLS is a useful compression tool for the 

purpose of making multivariate classification techniques more stable and less prone to 

overfitting, the LVs selected in this process were used as the input for all machine 

learning algorithms mentioned in this work.  

For the binary classification problem in this study, Y was a dummy vector 

generated using zeroes and ones representing non-playable and playable tape samples, 

respectively. Therefore, the values calculated for each spectrum by PLS-DA read 

between zero and one. The Bayesian theorem, which assumes the predicted values will 

follow a distribution similar to those of future samples, was used to determine the 

threshold value between zero and one for classifying the tape samples as non-playable or 

playable.  

2.5.2 Support vector machines 

SVMs were built using a library for support vector machines (LIBSVM)16 and a 

C-SVM classification algorithm with a linear kernel.17,18 The objective of the SVM is to 



www.manaraa.com

 

108 
 

find a hyperplane which correctly separated the non-playable tape LVs from the playable 

tape LVs. The hyperplane is created in such a way as to maximize the distance between 

the two classes of samples in the training set. The optimal hyperplane for separation is 

found using the minimization expression: 

𝑚𝑖𝑛 (
1

2
‖𝛼𝑖𝑦𝑖‖2 + 𝐶 ∑ 𝜉𝑖

𝑛

𝑖=1

)  

where 𝛼𝑖 are the Lagrange multipliers (parameters learned from the data), 𝑦𝑖 are 

reference values (±1) indicating class membership, 𝐶 is the cost parameter, 𝑛 is the 1900 

data points in the training set with index labels, 𝑖, and 𝜉𝑖 are slack variables which can be 

thought of as the noise in the data causing individual training points to have smaller or 

even negative margins.19 The minimization expression is subject to the following 

constraints: 

𝑦𝑖[𝛼𝑖𝑦𝑖𝜙(𝑥𝑖) + 𝑏] ≥ 1 −  𝜉𝑖  

𝜉𝑖  ≥ 0, 𝑖 = 1, … , 𝑛  

where 𝜙(𝑥𝑖) denotes the mapping to feature space, and 𝑏 is the bias. The C parameter 

was optimized by maximizing the training performance of values between 1 and 1000. 

2.5.3 Artificial neural networks 

A three-layer feedforward ANN consisting of one input layer, one hidden layer, 

and one output layer was employed. The input layer is comprised of weighted values for 

the significant LVs determined during PLS-DA. The hidden layer is responsible for 

taking the weighted data in the input layer and passing it through a sigmoid function.20 

The transformed results are reweighted and passed through another sigmoid function in 

the final output layer which contains two neurons. The error in the corrected weight 
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measurements calculated at the output side of the neural network is propagated backward 

from the output layer to the hidden layer and finally to the input layer. Backpropagation 

was carried out using gradient descent with momentum and adaptive learning rate.21 

To develop the ANNs in this study, spectra from 20 magnetic tapes were used for 

internal validation. The spectra used for this purpose were selected based on the 

algorithm developed by Kennard and Stone.22 Training performance of the ANN was 

monitored using the cross-entropy method.23 Training was allowed to progress until the 

cross-entropy of the validation set did not reach a minimum for six consecutive epochs. 

Finally, the epoch which resulted in minimum cross-entropy of the validation set was 

used to determine the weights for ANN testing.  

2.5.4 Naïve Bayes 

Naïve Bayesian classifiers are based on Bayes theorem with independence 

assumptions between predictors.24 Although this assumption is often false, naïve Bayes is 

a popular classification method which has shown to outperform other more sophisticated 

techniques on a number of real-world datasets.25,26 Bayes theorem is stated 

mathematically 

𝑃(𝑐|𝑥) =
𝑃(𝑥|𝑐) 𝑃(𝑐)

𝑃(𝑥)
 (3) 

where 𝑃(𝑐|𝑥) is the posterior probability of class, c, given predictor, x, and 𝑃(𝑥|𝑐) is the 

likelihood of observing x with the corresponding c. 𝑃(𝑐) and 𝑃(𝑥) are the prior 

probabilities of belonging to c and observing x, respectively.  
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One of the advantages of using naïve Bayes classification is the simplified 

training of the Bayesian parameters. The independent predictor assumption allows 

𝑃(𝑥|𝑐) to be calculated using the simplified product rule.24  

𝑃(𝑥|𝑐) = ∏ 𝑃(𝑥𝑖|𝑐)
𝐷

𝑖=1
 (4) 

Here, 𝑥𝑖 is the ith of D predictors, and is either zero or one. A result of using Equation 4 is 

many of the parameters that would need to be estimated if the independence assumption 

was not made have now been eliminated. Assuming a normal distribution enables 

𝑃(𝑥𝑖|𝑐) to be calculated from the number of samples, n, in each class along with the 

group mean, µ, and standard deviation, σ. 

𝜇 =  
1

𝑛
 ∑ 𝑥𝑖

𝑛

𝑖=𝑙
 (5) 

𝜎 =  [
1

𝑛 − 1
 ∑ (𝑥𝑖 − 𝜇)2

𝑛

𝑖=𝑙
]

0.5

 (6) 

𝑃(𝑥𝑖|𝑐) =  
1

√2𝜋 𝜎
𝑒

−(𝑥𝑖−𝜇)2

2𝜎2  (7) 

 In this study, the class prior probabilities for non-playable and playable magnetic tape 

were uniform (𝑃(𝑐) = 0.5). 

2.5.5 Decision trees 

Classification trees in this study were built using the top-down (i.e., tree begins 

with best predictor) approach with each of the input LVs representing the nodes in the 

tree. The ‘node error’ method was used as the criterion to split the items in the tree. Node 

error is calculated simply as one minus the fraction of misclassified samples at a given 

node. In general, the criterion used for splitting has a much smaller impact on the 
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predictive nature of the tree when compared to the criterion used for determining the 

number of branches which should be retained.27 Here, new nodes were created until all 

samples in the training set have been placed into one of the two classes. Stratified 10-fold 

cross-validation was used to determine which branches were insignificant for 

classification and should be subjected to ‘pruning’. 

2.5.6 Misclassification Cost 

Predicted classifications, 𝑦̂, are made so as to minimize the expected classification 

cost: 

𝑦̂ = arg min
𝑦=1,…,𝐾

∑ 𝑃̂(𝑘|𝑥)

𝐾

𝑘=1

𝐶(𝑦|𝑘) (8) 

where K is the number of classes, 𝑃̂(𝑘|𝑥) is the posterior probability of observation x 

belonging to class k, and 𝐶(𝑦|𝑘) is the cost of misclassifying an observation as y when its 

true class is k. C is a zero-diagonal square matrix with the cost of falsely classifying a 

playable tape as non-playable in the first row/second column, and the cost of falsely 

classifying a non-playable tape as playable in the second row/first column. For example, 

setting C equal to [0,1;2,0] would indicate a 2× higher cost for classifying a tape as 

playable when it is actually not playable. For ease of discussion, in all discussions of C, 

only the non-zero digits will be referred to.  

3. RESULTS AND DISCUSSION 

3.1 Infrared analysis 

A total of 95 tapes were used for the purpose of classification model training. Of 

the 95 tapes in the training set, 55 tapes were considered playable, and the remaining 44 

were determined to be non-playable based on playability testing. Twenty replicate ATR 
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FT-IR spectra were collected for each tape in the training set, and the averaged spectra 

calculated from the raw ATR FT-IR data are shown on the top panel of Figure 4.1. As 

can be seen on the bottom panel, the differences in the spectra of playable and non-

playable tapes are significantly enhanced by mean centering after SG smoothing and 

SNV. It is also worth noting that peak shoulders such as those at 1710 and 1515 cm-1 

become more pronounced after preprocessing. 

The chemical differences which lead to distinctive ATR FT-IR spectra between 

classes is revealed in Table 4.1. The vibrational assignments made were based on 

previous studies on the degradation of polyester-urethane using FT-IR spectroscopy.28-30 

Intensity increases at 1730, 1710, and 1140 cm-1 for non-playable tapes appear to indicate 

hydrolysis product formation. Hydrolysis of polyester-urethane yields carboxylic acid, 

consistent with the rise in intensity of the C=O vibrational peak, and alcohol. Other 

differences between classes include peaks at 1363 and 1254 cm-1 which only show up in 

the spectra of non-playable tapes. In a study by Zelst,31 these peaks were shown to be 

consistent with the IR spectrum of poly(1,4-butylene adipate) (PBA) using spectral 

subtraction. PBA is the base of polyester-urethane binder material and is believed to be 

increasingly exposed on the surface of the tape as polyester-urethane degrades. 

3.2 Partial least squares discriminant analysis 

Models based on PLS-DA, SVM-DA, ANN, DT, and NBC were developed using 

the 95 magnetic tape samples selected for use as training data to determine if playable 

tapes could be distinguished from non-playable tapes using ATR FT-IR. Training data 

was preprocessed using a SG smooth followed by SNV and mean centering.  
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Approximately 76.1% of the variance in the data is explained using the first three 

LVs obtained from PLS-DA. The scores for these LVs are plotted against each other in 

Figure 4.2. The scores plot shows separation into two distinct groups based on the 

chemical composition of the tapes. What cannot be seen from this figure are the 

subgroupings of the tapes. In most instances, all 20 replicate spectra of a tape are located 

in the same area of LV space. However, there are several instances where the 10 spectra 

taken at 50 cm are clustered in a separate location from the 10 spectra of the same tape 

collected at 100 cm. This indicates that some tapes are not chemically homogenous over 

the entire length of the tape. Therefore, different predictions about the playability of a 

single tape could be made by simply collecting spectra at two different locations.  

PLS-DA loadings plots for the first three LVs are shown in Figure 4.3. As 

expected, the loading for the first LV shows the most contribution from the free carbonyl 

groups likely resulting from carboxylic acid formation due to hydrolysis. Hydrolysis of 

the polyester-urethane binder has been considered by many researchers to be the main 

degradation mechanism leading to sticky shed syndrome.5,8,9 Contributions from the 

hydrogen bonded carbonyl groups appear in the second LV. The ester components (e.g., 

PBA and poly(ethylene terephthalate)) which aid in distinguishing playable from non-

playable tapes in the region between 1244 and 1095 cm-1 are visible in the second LV but 

are most prominent in the third LV.  

Poor generalization of discriminant analysis models can occur as a result of fitting 

noisy data that are not relevant for predicting the classes. To avoid overfitting, the 

number of LVs to be used as input for all models built in this study was specified by 

plotting the average classification error of the calibration and stratified 10-fold cross-
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validation results of PLS-DA versus the LV number as shown in Figure 4.4. Due to the 

increase in the average error of both calibration and cross-validation when transitioning 

from 11 to 12 LVs, it was determined that 11 LVs would be used to build the models. 

Also noteworthy in Figure 4.4 is the role that the first three LVs, which have already been 

described through the use of scores and loadings plots, have for the prediction of playable 

and non-playable tapes. The greatest reductions in classification error result from the use 

of those particular LVs.  

3.3 Support vector machine discriminant analysis 

SVM-DA algorithms can apply linear or radial basis function (RBF) kernels for 

linear or nonlinear separations, respectively. Because the kernel function defines the 

transformed feature space in which the separation will occur, selection of the appropriate 

kernel is critical. In this study, the linear approach was selected for use toward playability 

classification of polyester magnetic tapes. The reasons for selecting the linear kernel over 

the RBF kernel were twofold. First, previous work in this lab using linear discriminant 

analysis has shown that it is possible to discriminate non-playable tapes from playable 

tapes using a linear function. Second, when compared to linear SVM-DA, RBF SVM-DA 

is much more susceptible to overfitting. This problem often causes poor generalization 

even though little error may be seen during calibration and cross-validation.  

An additional advantage to using linear SVM-DA is the significantly less 

computation required in comparison to RBF SVM-DA. The linear SVM-DA model used 

here was trained in less than 12 seconds. For the purpose of comparison, an attempt was 

made to generate an SVM-DA model using the RBF kernel. Training of RBF SVM-DA 

was completed in ~4 minutes. The additional time needed for RBF SVM-DA results from 



www.manaraa.com

 

115 
 

the amount of parameter optimization involved. While both methods are performed by 

optimizing the SVM-DA cost parameter, C, a linear profile 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 + 𝑐 requires 

no additional optimization. Conversely, the 𝜎 value used to define the Gaussian profile 

𝐾(𝑥𝑖, 𝑥𝑗) = exp (−‖𝑥𝑖 − 𝑥𝑗‖
2

/(2𝜎2) in RBF SVM-DA must be optimized. The optimal 

C parameter for the linear SVM-DA model was ~316 and included 126 support vectors. 

A relatively small value for C (i.e., closer to 1 than 1000), a small number of support 

vectors (using only 126 of the 1900 training samples), and performance on an external 

test set all suggest the risk of overfitting has been minimized. 

3.4 Artificial neural networks 

The three-layer ANN configuration used in this study is shown in Figure 4.5. The 

first layer consists of 11 nodes corresponding to the LVs selected in PLS-DA. The 

number of hidden layers was set to nine based on the trial and error method. The two 

output possibilities represent non-playable or playable group membership. Internal 

validation was used to determine the weights of the hidden layers used to classify the LV 

scores. In this process, 20 (10 from both non-playable and playable classes) of the 95 

tapes were removed from the training data and used as a validation set. The 75 tapes to be 

used for building the ANN models were determined using the Kennard-Stone algorithm 

to ensure that samples defining the outer boundaries of the two classes were maintained 

for training. Figure 4.6 indicates, based on the minimum cross-entropy of the validation 

set, the weights used at epoch 123 should be used in the final model. The similar 

validation and test curves suggest the Kennard-Stone method is appropriate for selecting 

validation samples which will act similarly to newly introduced samples. In addition, the 

two curves being similar indicate that it is doubtful that overfitting has occurred.  
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3.5 Naïve Bayes classification 

One of the advantages to using NBC is the transparency of the technique. 

Kononecko32 related the probabilistic nature of NBC to those used by physicians as a way 

of diagnosing their patients in a replicative fashion. Because the prior probability of 

magnetic tape being classified as either playable or non-playable is uniform, playability 

was entirely based on the posterior probabilities of belonging to the classes as determined 

by Equation 6. Posterior probabilities were calculated using the class measures listed in 

Table 4.2 to estimate a separate normal distribution for each class. In this dataset, 

negative LV scores are indicative of non-playable tapes, whereas positive LV scores 

suggest the tape is playable. Of the five classification techniques mentioned in this study, 

NBC resulted in a calibration model with the highest misclassification rate at ~8.6%. The 

large standard deviations between group scores resulted from this relatively small portion 

of data. 

Figure 4.7 shows plots of the logarithm of the posterior probability of each 

spectrum belonging to playable and non-playable groups. Points lying along the top edge 

of these plots colored red are spectra corresponding to playable tapes, determined by 

playability testing, and were correctly assigned using NBC. The same can be said about 

the non-playable tape data shown along the right side in blue. The area in the top right 

corner of the plots (magenta in color) is where significant overlap of the class 

memberships occurs. This area can be thought of as the ‘borderline’ region where the 

tapes transition from playable to non-playable. The described region corresponds to 

samples of which the posterior probability of belonging to either class does not exceed 

0.95. Approximately 24% of the training data and 17% of the testing data fell in the 
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borderline region. Based on the calibration data, it appears that one non-playable tape (20 

spectra) shared similar chemical characteristics with many of the non-playable tapes and 

as a result was misclassified. An examination of the test data shows 20 replicate spectra 

from a playable tape showing up in the group of non-playable tape spectra. Because these 

misclassifications occur mostly near the borderline region, it is likely these errors are due 

to the subjective nature of playability testing as previously discussed.  

3.6 Decision trees 

Decision trees are a vast class of nonlinear classifiers.25,27 A full DT using all 11 

LV scores is given in Figure 4.8. The root node, the node which begins the tree, is the 

predictor which best separates the data into classes of non-playable and playable tapes. In 

this instance, the root node consists of the scores from LV 1, which takes into account 

much of the intensity differences seen between classes near 1730 cm-1. The data is then 

split into two nodes based on a threshold value which minimizes the classification error 

of the training data. LV 3, which is heavily influenced by class differences between 1244 

and 1095 cm-1 is the second most useful predictor in the tree. DT predictions about the 

playability of magnetic tape may be made using only scores from LVs 1 and 3. The 

results of cross-validation suggest that the full DT with scores from all 11 LVs should be 

used for prediction. Cross-validation misclassification rates of 0.01 and 0.09 were 

obtained using the full and pruned trees, respectively. The misclassification rate of the 

full tree when applied to the test data, however, was higher (0.19) than that of the pruned 

tree (0.16). This result suggests that the full-tree carries some level of overfitting, or some 

samples in the test set are significantly different than those used to train the DT. This 

issue should become clearer with more test samples. It should be noted that all values 
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communicated during the performance comparison of all model-types were obtained 

using the full DT as opposed to the shortened version. 

3.7 Performance comparison 

Table 4.3 gives the sensitivity (true positive rate) and fall-out (false positive rate) 

results of calibration, stratified 10-fold cross-validation, and external testing for each 

model-type used in the study. For binary classifications, the specificity (true negative 

rate) of one class is equal to the sensitivity of the opposing class. For this reason, 

specificity values are not directly mentioned. Here, a ‘good’ model is judged as being one 

that gives high sensitivity and low-fallout in both classes throughout calibration, cross-

validation, and testing. All models showed good performance during calibration and 

cross-validation giving sensitivity values greater than 0.9 and fall-out values less than 0.1 

for both non-playable and playable tapes. The generalization results show more 

separation between the methods, however. Even though the same 11 LVs were used as 

input to train all models, when applied to external data, only SVM-DA and ANN met our 

criteria to be considered good working models. Having the lowest across-the-board 

sensitivity and fall-out values, classification using DT was considered unfavorable. 

Though it depends heavily on the method, the sensitivity and fall-out results, especially in 

the cases of calibration and cross-validation, show that the likelihood of classifying a 

playable tape as non-playable is very similar to that of classifying a non-playable tape as 

playable. 

To lower the likelihood of classifying a non-playable tape as playable, a scenario 

most tape custodians would like to avoid if possible, a cost parameter can be added to the 

statistical methods described above. In this work, the cost ratio, the cost of misclassifying 
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a non-playable tape as playable divided by the cost of misclassifying a playable tape as 

non-playable, was increased until a false positive rate for playable tapes in the calibration 

set reached a value of ~0.01, or ~1%. Because two of five methods, ANN and DT, 

already had false positive rates of playable tapes below 0.01, the cost parameter was only 

adjusted for three methods, PLS-DA, SVM-DA, and NBC. The results of this analysis are 

shown in Table 4.4. The instances of falsely classifying a non-playable tape as playable 

decreased by 4.9%, 2.9%, and 3.3% for PLS-DA, SVM-DA, and NBC, respectively. The 

false positive rates for playable tapes in the test sets are all greater than 0.1. With all tapes 

in the calibration set originating from only one institution, this appears to be due to tape 

formulation differences (discussed more in Chapter 5) or storage condition differences 

between institutions. The effect that changing the cost parameter had on the overall 

classification accuracy of magnetic tape samples was highly dependent on the method. 

SVM-DA and NBC models displayed an increase in classification of 1.2% and 1.0%, 

respectively, whereas, the classification of the PLS-DA model decreased by 7.7%.  

It is often prudent to determine which classification techniques are best by 

examining how well they perform on an external test set, provided that test set is 

representative of the population, and the amount of computation required for model 

training. These metrics are displayed in Table 4.5. Although multiple techniques (PLS-

DA, SVM-DA, ANN, and NBC) resulted in a correct prediction rate greater than 90%, 

ANNs were clearly the best discriminator of this set of data based on the higher 

prediction accuracy and Matthew’s correlation coefficient.33 Epochs required for ANN 

training, and parameter optimization required for the training of SVM-DA (especially in 

the case of nonlinear SVM-DA) led to increases in computation time. Conversely, logic 
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based algorithms (e.g., DTs) and statistical learning algorithms (e.g., PLS-DA or NBC), 

though the prediction accuracies were significantly lower in most instances, required less 

time for training.  

4. CONCLUSION 

In this paper, various supervised machine learning techniques have been 

successfully applied to ATR FT-IR spectra for the purpose of determining playability of 

polyester-urethane magnetic tapes. No learning algorithm can perform best on all types of 

datasets, and each technique has inherent strengths and weaknesses. Some of the highest 

prediction accuracies were gained using ANN and SVM-DA models. Some pitfalls of 

these methods are poor interpretability and sometimes hefty computation times. The 

opposite holds true for DT and NBC which are easily interpretable and train very quickly, 

but tend to give less accurate predictions. NBC typically has high bias which occurs as a 

result of assuming the data follows a single (e.g., normal) probability distribution. 

Conversely, the hard cut-off values used to separate classes using DTs make the method 

susceptible to high variance. Finally, the other statistical method used in this research, 

PLS-DA, seemingly strikes a balance between all of the methods we have studied. The 

method gave slightly lower prediction accuracies compared to those of ANNs, but the 

scores and loadings determined in PLS-DA are useful for studying the chemical nature of 

which class separation is based upon. As shown in this study, PLS-DA has also proven to 

be a useful tool for reducing the dimensionality of ATR FT-IR magnetic tape data. In 

future work, algorithms similar to the ones described here could be utilized as part of a 

software package that enables conservationists to screen for tapes which require 

restoration, without risking further damage to the tape or playing instrument. 
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Table 4.1 Peak assignments for infrared absorbance spectrum of magnetic tape. 

Wavenumbers are approximates based on average spectrum of tapes. 

 
Wavenumber 

 (cm-1) 

Tape type Assignmenta Tape component References 

1730 Both ν(C=O) free Poly(ester-urethane) 28-30 

1710 Both ν(C=O) H-bonded Polyurethane 29 

1600 Both ν(C=C) Phenyl ring Polyurethane 29,30 

1533, 1311, 1220 Both ν(C=N) + δ(N‒H) Polyurethane 28-30 

1475 Non-playable δ(CH2) Poly(ester-urethane) 28-30 

1460 Both δ(CH2) Poly(ester-urethane) 28-30 

1414 Both ν(C‒C) Phenyl ring Polyurethane 29,30 

1394 Non-playable ω(CH2) Poly(ester-urethane) 29,30 

1363 Non-playable ω (CH2) Poly(ester-urethane) 29,30 

1254 Non-playable ν(C‒O‒C); ω(CH2) Polyester 29,30 

1174 Both ν(C‒O‒C) Poly(ester-urethane) 28,30 

1142 Non-playable ν(C=O) + ν(O‒CH2) Poly(ester-urethane) 30 

1076 Non-playable ν(C‒O‒C) Poly(ester-urethane) 29,30 

1065 Playable ν(C‒O‒C) Poly(ester-urethane) 29,30 

1018 Both ρ(C‒H) Polyurethane 29 
aVibrational modes are: ν = stretching, δ = in-plane bending (scissoring), ρ = in-plane bending 

(rocking), ω = out-of-plane bending (wagging). 
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Table 4.2 Naïve Bayes classification parameters. 

 

Latent 

variable 

Mean  Standard deviation 

 Non-playable Playable Non-playable Playable 

1 -2.5500 2.7163 2.0930 2.3732 

2 -0.5085 0.5416 1.5761 1.4034 

3 -0.3334 0.3552 1.3509 1.7732 

4 -0.2424 0.2582 2.0735 0.9426 

5 -0.1106 0.1178 0.7496 0.7325 

6 -0.0869 0.0926 1.0153 0.6894 

7 -0.0696 0.0741 0.6776 0.6868 

8 -0.0306 0.0326 0.2943 0.2817 

9 -0.0243 0.0259 0.2431 0.3565 

10 -0.0264 0.0281 0.3204 0.4095 

11 -0.0215 0.0229 0.2178 0.2663 

 



www.manaraa.com

 

127 
 

Table 4.3 Sensitivity and fall-out of calibration, stratified 10-fold cross-validation, and 

external testing with equal cost of misclassifications between classes. 

 
Model Methoda True positive rate False positive rate 

  Non-playable Playable Non-playable Playable 

Calibration PLS-DA 0.957 0.959 0.041 0.043 

 SVM-DA 0.977 0.967 0.033 0.023 

 ANN 1.000 0.999 0.001 0.000 

 NBC 0.898 0.929 0.070 0.102 

 DT 0.986 0.999 0.001 0.004 

Cross-validation PLS-DA 0.955 0.959 0.041 0.045 

 SVM-DA  0.977 0.966 0.034 0.023 

 ANN 0.992 0.995 0.005 0.008 

 NBC 0.893 0.929 0.089 0.107 

 DT 0.986 0.987 0.013 0.014 

Test PLS-DA 0.898 0.921 0.079 0.102 

 SVM-DA 0.900 0.911 0.089 0.100 

 ANN 0.950 0.905 0.095 0.050 

 NBC 0.895 0.911 0.089 0.104 

 DT 0.829 0.771 0.229 0.171 
aMethod abbreviations: partial least squares discriminant analysis (PLS-DA), support vector 

machine discriminant analysis (SVM-DA), artificial neural networks (ANN), naïve Bayes 

classification (NBC), and decision trees (DT). 
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Table 4.4 Sensitivity and fall-out of calibration, stratified 10-fold cross-validation, and 

external testing with higher cost of falsely classifying a non-playable tape as playable. 

 
Model Methoda Cost ratio True positive rate False positive rate 

   Non-playable Playable Non-playable Playable 

Calibration PLS-DA 1199 0.865 0.992 0.135 0.008 

 SVM-DA 6.201 0.989 0.919 0.099 0.011 

 NBC 10.07 0.992 0.820 0.180 0.008 

Cross-validation PLS-DA 1199 0.862 0.985 0.138 0.015 

 SVM-DA  6.201 0.989 0.914 0.086 0.011 

 NBC 10.07 0.982 0.817 0.183 0.017 

Test PLS-DA 1199 0.758 0.947 0.242 0.053 

 SVM-DA 6.201 0.929 0.887 0.113 0.071 

 NBC 10.07 0.968 0.818 0.182 0.032 
aMethod abbreviations: partial least squares discriminant analysis (PLS-DA), support vector 

machine discriminant analysis (SVM-DA), and naïve Bayes classification (NBC). 
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Table 4.5 Model testing classification accuracies and Matthew’s correlation coefficients 

with equal cost of misclassifying playable and non-playable tapes. 

 
Method Correct 

classification 

 MCC Time (s) 

PLS-DA 0.907 0.820 1.357 

SVM-DA 0.906 0.814 11.94 

ANN 0.923 0.842 4.522 

NBC 0.901 0.795 0.170 

DT 0.807 0.595 0.890 
aMethod abbreviations: partial least squares discriminant analysis (PLS-DA), support vector 

machine discriminant analysis (SVM-DA), artificial neural networks (ANN), naïve Bayes 

classification (NBC), and decision trees (DT). 
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Figure 4.1 Absorbance spectra from magnetic tape samples (a) before preprocessing and 

(b) after preprocessing with Savitzky-Golay smoothing followed by standard normal 

variate transform and mean centering.  
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Figure 4.2 Partial least squares discriminant analysis scores plot for playable and non-

playable magnetic tape samples.  
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Figure 4.3 Partial least squares discriminant analysis loadings plot for the first three 

latent variables. 
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Figure 4.4 Average classification error of calibration and stratified 10-fold cross-

validation models by number of latent variables used in partial least squares discriminant 

analysis.  
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Figure 4.5 Three layer feed-forward artificial neural network. 
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Figure 4.6 Artificial neural network performance progress of training, validation, and test 

data. Best validation performance is indicated by intersecting dashed lines. 
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Figure 4.7 Log posterior probabilities of magnetic tapes included in the calibration (left) 

and test (right) sets belonging to playable and non-playable classes as determined by 

naïve Bayes classification. Blue and red markers indicate class determined by playability 

testing. Magenta markers indicate region of significant overlap of classes. 
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Figure 4.8 Decision tree used to classify playable (P) and non-playable (NP) magnetic 

tapes using scores from 11 latent variables selected by partial least squares discriminant 

analysis.
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CHAPTER 5 

MATSA: A USER FRIENDLY SOFTWARE PROGRAM FOR 

MAGNETIC AUDIO TAPE SPECTRA ANALYSIS 

 

ABSTRACT 

For both personal and professional purposes, magnetic audio tapes experienced 

widespread use for decades as a recording medium and are an invaluable source of 

cultural and historical information. Unfortunately, the data stored on magnetic audio 

tapes is at risk of being destroyed due to chemical deterioration. In recent years, a 

massive effort has been put in place by many cultural heritage institutions to transfer the 

media from the magnetic tapes to a digital format, thereby preserving the endangered 

information for future generations. The first step in the digitization process involves 

examining the collection of tapes and removing any degraded tapes which, during 

playback by an audio engineer, may be further impaired or cause damage to the tape 

recorder. A fast, objective, and non-destructive method of assessing a tape’s playability is 

ideal, and previous work in our laboratory has shown that combining attenuated total 

reflectance Fourier transform infrared spectroscopy (ATR FT-IR) and multivariate 

statistics can be used for this purpose. 

Here, we have developed a user-friendly software package which would enable 

tape custodians to visualize spectral data and determine the playability of magnetic audio 

tapes. Among the methods currently implemented in the Magnetic Audio Tape Spectral 
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Analysis (MATSA) program are two feature extraction techniques, principal component 

analysis (PCA) and partial least squares (PLS), in addition to six classification algorithms 

including artificial neural networks, decision trees, naïve Bayes classification, support 

vector machines (SVM), and linear and quadratic discriminant analysis. The program was 

built using a reference collection of ATR FT-IR spectra from 95 quarter-inch audio tapes. 

An internal validation accuracy of 93% was achieved after applying PCA-SVM 

classification to the reference data. Two separate test collections, one containing 50 tapes 

and another containing 31 tapes, were classified with 88% and 90% accuracies, 

respectively. 

1. INTRODUCTION 

Magnetic audio tapes earned widespread use as a recording medium beginning in 

the 1950s. Their reputation as being a durable and high-quality storage medium enabled 

magnetic tapes to remain popular for nearly a half century. The usage of magnetic tapes 

has been steadily declining recently, though many recording artists and engineers still 

prefer the sound of analog over digital for recording. At this time, manufactures have 

virtually halted the production of all high-end analog audio tape recorders, and collection 

managers are left with several decades’ worth of cultural and historical information 

stored on magnetic audio tapes which are threatened by numerous mechanisms of 

deterioration.1-6 As a result, many institutions are now converting analog recordings to 

the more stable digital medium. 

The digitization process, which requires the tapes to be played, can be challenging 

for tapes produced from the 1970s to the 1990s. During this time, select manufacturers 

adjusted the formulation of magnetic recording tapes in order to provide a greater 
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dynamic range. These changes produced a new side-effect called sticky-shed syndrome 

(also referred to as sticky-tape or archival-shed syndrome). Sticky-shed syndrome is a 

condition in which the polyester-urethane binder, used to hold the magnetic oxide 

particles onto the polyester substrate, is subjected to hydrolysis due to humidity in the 

storage location.7,8 Tapes displaying sticky-shed syndrome often make high-pitched 

noises when played, move slower in fast-forward mode compared to non-deteriorated 

tapes, and hinder movement of the reels when in rewind mode. More importantly, 

shedding of the magnetic layer onto the playback device can result in permanent data loss 

and downtime while the instrument is cleaned. 

Fortunately for conservationists, the hydrolysis reaction responsible for the tape’s 

deterioration is reversible. Therefore, if tapes are determined to have sticky-shed 

syndrome, a temporary restoration may be made prior to playback by ‘baking’ the tapes 

using a dehydrator or convection oven.9 With collections of more than 46 million 

recording tapes in the U.S. alone,10 the development of fast and nondestructive tools to 

assess magnetic tape collections is a priority in order to establish preservation strategies. 

To date, no such tools are available, and determinations on whether recording tapes 

should undergo restoration are often based on the ability of a tape machine to play the 

tapes.  

Recent studies by Zelst11 and Hobaica12 suggest that sticky-shed syndrome can be 

detected without causing harm to the tape or recording instrument using attenuated total 

reflectance Fourier transform infrared spectroscopy (ATR FT-IR). In addition, by 

applying a decision-making algorithm based on multivariate statistical analysis such as 

quadratic discriminant analysis (QDA), tapes that are not likely to be playable by 
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common recording instruments can be separated from those tapes that are unlikely to 

cause significant complications when attempting to play.13 Improvements in the accuracy 

of playability determinations can be gained using more sophisticated machine learning 

algorithms such as artificial neural networks (ANN) and support vector machine 

discriminant analysis (SMV-DA).  

The objective of this work is to develop a user-friendly software application that 

tape custodians can apply to IR measurements to rapidly determine playability of tapes in 

a collection. The Magnetic Audio Tape Spectra Analysis (MATSA) program made for 

this purpose was developed from the graphical user interface development environment 

(GUIDE) in MATLAB, a high-level language and interactive environment used in the 

scientific and engineering communities. The MATSA program is available for free upon 

request by contacting the corresponding author. A general description of the application 

and the variety of options contained within MATSA are described in this paper. A more 

in-depth explanation of the software and algorithms contained therein can be found in the 

user’s manual provided with the software.  

2. PROGRAM DESCRIPTION 

The MATSA program was created using GUIDE in MATLAB version 8.3. 

MATSA is comprised of subroutines within the statistics toolbox in MATLAB, in-house 

written functions, and other functions freely available on the Web. The current version of 

MATSA was programmed and tested on a system with a Windows operating system. 

Future releases of the program can be made available for other operating systems such as 

Macintosh and Linux after slight modifications. 
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2.1 Data importation 

The MATSA title menu and main user interface in Figure 5.1 are accessed by 

running the ‘MATSA_v1_1’ m-file and importing data. Data is imported by following a 

series of commands issued after clicking anywhere on the title menu or through the use of 

the ‘File’ menu. To make MATSA fully functional, two types of datasets are imported. A 

reference dataset contains spectra from tapes with known playabilities determined 

through playability testing. Reference data is provided with the software but may be 

added to or replaced completely by the user. All samples of unknown playability are 

imported into MATSA as prediction data.  

MATSA accepts data in Microsoft Excel format and requires three inputs. The 

first input requirement is a data array in which each row corresponds to a magnetic tape 

sample, and each column is a transmittance, T, or absorbance, 𝐴, measurement. To ensure 

that all reference and prediction data is comparable, any transmittance measurements that 

are input into MATSA are converted to absorbance either by 𝐴 = −log (𝑇) for fractional 

transmittance data or 𝐴 = −log (𝑇/100) for percent transmittance values. The second 

input must be a vector comprised of wavenumber (cm-1) frequencies or nanometer (nm) 

wavelengths corresponding to the measurements in the input data array. By default, 

MATSA converts nm values to cm-1. The final piece of required information is a two 

column list identifying names and numbers of samples measured. The list of identifiers 

allows the program to discern which samples in the data array correspond to different 

tapes and which correspond to replicate measurements of the same tape. These identifiers 

are also listed alongside the playability results in the final table that is made available by 
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MATSA, thus making it easy for the user to organize the results for their current 

collection of magnetic audio tapes.  

2.2 Working with the graphical user interface 

After one or more datasets have been loaded, the MATSA GUI main menu shown 

in Figure 5.1 will become available. From the main menu, the following functions can be 

performed: 

1. View absorbance spectra of reference collection and samples to be predicted. 

2. Edit examined frequency region. 

3. Set classification parameters (dimensionality reduction method, number of 

factors to be retained, and prediction algorithm). 

4. Determine quality of selected model through validation. 

5. Obtain graphical and tabular representations of playability prediction results. 

Each of these functions will be explained in greater detail in the following 

sections utilizing an example collection of data that was used to test the program during 

the development process. See reference 13 for a description of the datasets, including the 

methodologies for ATR FT-IR spectra collection and tape recorder playability testing. 

The reference data contained 1900 spectra from 95 (20 replicate spectra collected per 

tape) magnetic audio tapes. Only one spectrum per tape (50 total spectra) was used for a 

50 tape collection of tapes with unknown playabilities. 

2.2.1 Spectral visualization and preprocessing 

Raw and preprocessed absorbance spectra can be obtained using the 

‘Visualization’ pop-up menu. For simplicity, data preprocessing in MATSA is currently a 
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four-step static process. First, a cubic spline interpolation of the data is carried out using 

the ‘interp1’ function in MATLAB.14 Using this function, new absorbance measurements 

are predicted at given wavenumber values (equally spaced increments of 1 cm-1). The 

result is all reference and prediction data sharing a common frequency axis regardless of 

the original intervals used during data collection. The interpolated signal is smoothed 

further using the Savitzky-Golay method (4th order polynomial, 5 point moving 

window).15,16 Next, multiplicative interference from scatter and particle size is removed 

using a standard normal variate (SNV) transformation.17 Finally, each column in the data 

array is mean centered before performing one of the dimensionality reduction methods in 

MATSA. It should be noted that the user also has the option to not perform any 

processing beyond interpolation. This makes it possible to perform data analysis on 

spectra preprocessed using alternative software. 

Figure 5.2 shows ATR FT-IR spectra of magnetic audio tapes before and after 

preprocessing. Changes occurring in the ATR FT-IR spectrum of aging polyester-

urethanes have been described on multiple occasions. In general, non-playable tapes will 

show very strong absorbance around 1730 cm-1 due to the C=O stretching. The strength 

of this peak is lower in tapes that have not undergone significant degradation. 

Characteristic bands in spectra of non-playable tapes are located near 1255 cm-1 and 1140 

cm-1, corresponding to the respective C-O and O-H stretching vibrations likely due to 

carboxylic acid formation as a result of hydrolysis. Non-degraded tapes typically display 

peaks due to saturated ester stretching from polyester near 1210 cm-1 (C-C-O) and 1050 

cm-1 (O-C-C) which are not present in degraded samples. With degradation being a 

continuous process, it can be difficult to interpret numerous mean centered spectra 
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simultaneously on a single panel in MATSA. It is, perhaps, easier to select spectra which 

represent the extremes of the reference dataset, and compare a single spectrum of interest 

to those extremes to determine the extent of degradation of a particular tape.  

2.2.2 Input parameters 

When new frequencies are specified by the user in the ‘input parameters’ section 

on the GUI, MATSA searches the features array of all available datasets, finds the values 

nearest to the user-specified values, and truncates the data at those points. Any change in 

the frequency region is reflected in all subsequent MATSA plots and calculations. In 

addition to the editable frequency boxes, the respective numbers of samples in the 

reference and prediction datasets are displayed. These values are determined using the list 

of identifiers imported by the user.  

2.2.3 Prediction model algorithms 

Before playability predictions can be made in MATSA, the user must specify the 

algorithms used by the program to reduce data dimensionality and perform 

classifications. Several benefits are gained by reducing the dimensionality of ATR FT-IR 

data prior to analysis. Feature selection or extraction methods are often effective ways of 

dealing with the “curse of dimensionality,” which states that the number of samples 

required for statistical significance increases exponentially with the number of 

dimensions.18 In addition, dimensionality reduction can be used to reduce noise, reduce 

computational cost, and remove correlated variables, all of which can negatively 

influence the outcome of classification models. 

The GUI allows for feature extraction by principal component analysis (PCA) or 

partial least squares (PLS). In PCA, the original wavenumber variables are reduced to a 
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new set of factors, called principal components (PCs).19,20 Each PC consists of scores, 

transformed variable values of each data point, and loadings, weights used to multiply 

each variable to get the component score. The scores are orthogonal and therefore, by 

definition, are well-conditioned. Moreover, the first PC describes the direction of 

maximum variance, provided the input data is mean centered.  

Plots of the scores and loadings from the first two PCs representing 77.7% of the 

total variation in the reference dataset are depicted in Figure 5.3. The scores plot shows 

the clustering of spectra from non-degraded audio tapes and their separation from spectra 

associated with degraded samples of mostly non-playable tapes. Spectra from playable 

tapes located on the left side of the scores plot are an indication that tapes can be 

degraded without showing sticky-shed syndrome to the extent that would cause difficulty 

when playing. Linear discriminant analysis (LDA) was used to draw a linear decision 

boundary which best separated the two classes in two-dimensional space. The boundary 

drawn in Figure 5.3 separates the reference samples into the two playability classes with 

88.3% (1,678 of 1,900 spectra) accuracy. The chemical information captured by the first 

two PCs is shown in the loadings plots. The first PC captures the C=O stretching 

vibration near 1730 cm-1 which, as mentioned previously, increases as the tapes degrade. 

The largest contributor to the second PC is the ester C-O-C stretching vibration band near 

1170 cm-1 which shifts to higher frequencies as the polyester-urethane binder 

deteriorates. 

PC scores and loadings are useful for describing the variance in the absorbance 

spectra but do not necessarily capture all relevant information for predicting playability. 

A solution to this problem can be found using PLS. PLS is similar to PCA, but the 
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factors, called latent variables (LVs), are created in such a way as to maximize the 

amount of variation in the spectra that is relevant for predicting the tape’s playability.21 

This typically means that fewer factors are needed for PLS models compared to PCA 

models.22 

Because no single technique works best for all possible tasks and forms of data, 

there are currently six supervised classification algorithms available in MATSA to 

predict playability of magnetic tapes after performing PCA or PLS on ATR FT-IR data. 

The algorithms included are naïve Bayes classification (NBC), decision trees (DT), LDA, 

QDA, ANN, and SMV-DA. Three of the six algorithms, LDA, QDA, and NBC have an 

explicit underlying statistical model which provides the probability that each tape is 

either playable or non-playable. Along with decision trees, a logic-based algorithm, these 

methods have the advantages of being easily interpretable, less prone to overfitting, and 

requiring less computation when compared to more sophisticated techniques such as 

ANN and SMV-DA. However, ANN and SMV-DA remain valuable tools, and are 

included in this program because of their tendency to perform better on large datasets 

with continuous features. Due to the popularity of the six supervised methods just 

mentioned, many detailed descriptions of how these techniques carry out classification 

tasks are available.23-25 Also, a comprehensive review of the strengths and weaknesses of 

each technique has been provided by Kotsiantis.26  

MATSA is capable of running within the MATLAB environment in which it was 

created or as a stand-alone application. Both versions include all six of the previously 

described prediction algorithms. However, due to the current capabilities of the 

MATLAB Compiler used to create the stand-alone form of MATSA, the ability to train 
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ANN and DT models is not included in the edition that runs outside of MATLAB. 

Instead, the stand-alone version uses pre-trained ANN and DT models based on the 

default settings (five PCs) in addition to the other four fully functional prediction 

algorithms of which models can be built and run in MATSA. 

2.2.4 Prediction model validation 

To examine the potential performance of the user selected prediction method on 

new magnetic audio tapes, internal validation of the reference dataset is applied by 

clicking on the ‘Calculate’ button on the main user interface. The hold-out cross-

validation method used in MATSA is performed by temporarily removing ~40% of the 

reference data. An attempt is then made to classify the validation samples, which are 

selected in a stratified manner according to the tape identifiers. The user can use the hold-

out method to determine a ‘good’ combination of parameters to use for prediction, or as a 

measure of the default model’s ability to predict new samples. The default parameters 

were selected as a result of the work carried out in reference 13. In that work, only the 

first five PCs were needed to build a classification model using QDA. 

Alternatively, an appropriate model can be selected using the ‘Autoselect’ button 

on the main window. The critical first step of the automated model selection process is to 

determine the number of PCs or LVs that should be used to build the classification 

models. The goal of this step is to include all factors which are useful for classifying the 

tapes, but leave out those which capture spectral noise. The inclusion of noise during 

model training can lead to incorrect predictions of unknown samples. For PCs, this is 

determined using Joliffe’s modification of the Guttman-Kaiser criterion, which retains 

only those PCs with an eigenvalue greater than the product of 0.7 and the average of all 
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eigenvalues generated.20 For PLS, the number of optimum number of LVs was selected 

as the number which correctly classified the most samples in the reference set using a 

minimum Mahalanobis distance classifier.27,28 The ‘Autoselect’ algorithm then cycles 

through 20 iterations of hold-out cross-validation with each prediction method using only 

the selected factors. The technique with the highest average classification accuracy is 

displayed by MATSA and is suggested for predicting playability of new data. 

SVM classification using 16 PCs was selected by MATSA after using the 

‘Autoselect’ function on the 95 tape reference collection. The average hold-out cross-

validation accuracy for the model is displayed in the GUI shown in Figure 5.4. Also 

displayed in the figure is a box-and-whisker plot showing the distribution of results 

obtained by each prediction method during the iterative cross-validation process. Here, 

the box edges represent the 25th and 75th percentile, the median of each group is shown 

using a horizontal green line, and black dashed lines (whiskers) extend to the most 

extreme points not considered outliers. Those points considered outliers such as seen in 

the ANN and DT results, have red markings. In most instances where the ‘Autoselect’ 

feature was used on the example dataset to select an appropriate model for prediction, 

less variance in the validation results was seen with LDA and SVM classification. ANN, 

DT, and NBC typically showed higher variance in the results and tended to be more 

prone to outliers. 

2.2.5 Playability predictions 

There are multiple ways to view playability of magnetic audio tapes in MATSA. 

This can be done graphically, by viewing PCA or PLS scores of samples with unknown 

playabilities. Figure 5.5 shows the tapes to be predicted in the space of the first two LVs 
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calculated from the reference data. Projected with the prediction samples, is the linear 

decision boundary used by LDA to classify the reference samples using only the first two 

PCs. The user has the option of plotting a quadratic decision boundary, as opposed to the 

linear boundary displayed, using QDA. Using a built-in pop-up menu, a specific tape can 

be selected and highlighted to view its location in PC or LV space. Here, the first 

recording tape is highlighted, and by recalling the scores plot of the reference samples in 

Figure 5.3, it can be seen that the ATR FT-IR absorbance spectrum of tape number one 

more closely resembles the spectra of the non-playable reference tapes. 

Because prediction will often be accomplished using an alternative prediction 

algorithm or occur in a higher dimension, there are no guarantees that the graphical 

representations of playability will match the final prediction results given by MATSA. 

The final predictions made using the specified dimensionality reduction and prediction 

techniques are given in tabular form (example shown in Figure 5.5). Here, each sample 

name and number is associated with a color-labeled playability prediction. A ‘green’ 

prediction is indicative of a recording tape unlikely to cause significant problems when 

attempting to play using a tape machine. To ensure the tape may be safely copied to a 

different format without causing harm to the recording instrument or losing valuable 

information, temporary restoration should be considered for any sample given a ‘red’ 

prediction. 

The predictions of the 50 tape test collection generated by PCA-SMV-DA in 

MATSA were compared to the predetermined designations resulting from physically 

attempting to play the tapes. Of the 50 tapes, 44 (88%) were classified correctly. In only 

one instance, a playable tape was falsely classified as non-playable. The remaining five 
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tapes were classified as non-playable after being previously designated as playable. It 

should be noted that all six misclassified tapes came from the same institution from 

which the reference data originated. No misclassifications were found in the collection of 

tapes donated from the second institution. 

2.2.6 Dealing with the cost of misclassifications 

Because of the potential value of the information contained on magnetic audio 

tapes, it will often be wise to error on the side of caution and try to avoid falsely 

classifying non-playable tapes as being playable. This comes with the obvious drawback 

that more playable tapes will be incorrectly classified as being non-playable, resulting in 

more tapes which need to be restored before digitization. However, this is typically not as 

big of a concern as the data loss or instrument maintenance issues that could result from 

attempting to play a sticky tape. By specifying ‘cost’ parameters when using statistical 

learning algorithms in MATSA, the probability of getting a particular result can be 

increased or decreased. 

Shown in Figure 5.6 is a comparison of the LDA decision boundaries used to 

classify samples of the reference dataset in the space of the first three PCs with a non-

playable to playable cost of 1:1 versus a cost of 1:0.2 (i.e., the cost of classifying a non-

playable tape as playable is five times greater than the cost of classifying a playable tape 

as non-playable). Three-dimensional plots are fully rotatable in MATSA using the ‘Make 

Interactive’ button on the user interface. Here, clustered samples representing replicate 

spectra from two tapes, which were nearly equidistant from the centroids of the two 

groups, switched playability designations when the cost of misclassifying non-playable 

samples was increased. Because the two tapes were assigned to different classes initially 
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using playability testing, the overall change in classification accuracy was minimal. As 

the cost parameter was altered from 1:1 to 1:0.2, the classification accuracy of the 

reference samples only increased from 87.8% to 88.7%. However, a 35.8% reduction in 

the number of reference spectra that were falsely classified as being playable was 

achieved. The 50 tape test data was largely unaffected after performing the same analysis 

using LDA, as only one of the 50 tapes was given a new playability designation after 

changing the cost from 1:1 to 1:0.2. Overall, when compared to the SMV-DA results 

mentioned in the last section, LDA with a cost of 1:02 had a 6% (3 tapes) lower accuracy 

with each of those tapes being falsely classified as non-playable.  

3. ADDITIONAL PERFORMANCE TESTING 

A collection of 41 tapes from various locations was obtained and analyzed using 

ATR FT-IR to further test the ability of MATSA to predict tape playability. Unlike the 

145 tape collection used to build the MATSA program, this test collection was comprised 

of tapes of which the brand and model were known and available to use as part of the 

data exploration process. Exploratory analysis in the form of agglomerative hierarchical 

cluster analysis (AHCA) was performed using PLS_Toolbox (Eigenvector Research Inc., 

Manson, WA) software to determine if the spectra from the 41 tape assorted collection 

showed similar spectral characteristics with the 95 polyester-urethane tapes used as the 

default training model in MATSA. The AHCA method starts with all spectra apart (i.e., 

the number of clusters equals the total number of spectra). The clusters progressively 

merge based on a user-selected criterion until all samples are in a single cluster.29,30 In 

this work, the AHCA linkage criterion is Ward’s method which minimizes the total 

variance within each cluster.31 
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For simplification, the preprocessed replicate spectra of each tape were averaged 

before performing AHCA, and the tapes were identified according to the manufacturer 

and model number. The dendrogram resulting from AHCA on the averaged spectra is 

shown in Figure 5.8. Immediately noticeable is the similarity between tapes with the 

same manufacturer and model number. This suggests the slight variations in the 

formulations of the binder used between the manufacturers can be detected in the IR 

region being studied. The dendrogram is also indicative of two very distinct groups 

(labeled one and two on the left side of the figure) being present in this collection. 

To study the differences between the clusters, spectra from the ten tapes in cluster 

one were averaged and compared to the average spectrum calculated from the 31 tapes in 

the second cluster. This comparison between spectra can be seen in Figure 5.9. It is clear 

that the spectra in the second cluster more closely resemble the spectra from the 95 

polyester-urethane tapes which were used to build the classification models in MATLAB. 

Therefore, useful predictions could only be made on the tapes in the second cluster. Many 

of the tape brands located in cluster one were known to be introduced in the early 1960s, 

before the switch made by many manufactures to use polyester-urethane as the binder, in 

an era where acetate- and polyvinyl chloride-based binders were common. To predict the 

playability of tapes in cluster one, it would be necessary to create a new model using 

tapes with similar formulations as the current classifier is likely to place all of these tapes 

into one class, and any accuracy obtained would be based completely on chance.  

To assess the prediction ability of the MATSA program on the tapes in cluster 

two, the playability of each tape was predetermined by attempting to play the tape with a 

tape machine. The same 95 tape model and automatically selected method of prediction 
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(SMV-DA with 16 PCs) discussed in previous sections were used to classify each 

replicate spectrum (20 replicates per tape) of the 31 tapes. Of 620 total spectra, 559 

spectra were correctly associated with the predetermined playabilities of the tapes 

resulting in a classification accuracy for this dataset of 90.16%. With no cost parameter 

adjustment, MATSA falsely classified non-playable tape spectra as belonging to playable 

tapes 3.39% of the time. Playable tape spectra were falsely classified as belonging to non-

playable tapes 6.45% of the time. 

4. CONCLUSION 

A stand-alone software application has been presented for determining the 

playability of magnetic audio tapes following ATR FT-IR spectroscopy, an instrumental 

analysis technique already used by many cultural heritage institutions to identify organic 

compounds and polymeric materials. The easy-to-use interface gives tape custodians the 

ability to determine, within minutes after spectra collection, if tapes in a lot are 

immediately ready to be digitized or should be subjected to restoration. MATSA is a 

flexible program allowing data with differing numbers of features and observations to be 

used for reference and prediction. Therefore, six different prediction algorithms are 

included in the program to help achieve a quality separation between data from playable 

and non-playable tapes. Additional flexibility is available using the cost parameter which 

enables one to adjust the decision boundaries between classes, thus making it less likely 

for an undesired outcome (i.e., predicting a tape is playable when it is not) to occur. 

Visualization tools such as decision boundaries in the space of PC or LV scores, loadings 

plots, and spectral plots, all make it possible to conveniently explore the chemical 

differences between samples which resulted in the prediction given by the program. 
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The MATSA program was built and tested using ATR FT-IR data collected from 

over 250 quarter-inch reel-to-reel audio tapes stored at four separate institutions. Quarter-

inch tapes were selected as the desired format for analysis in MATSA after a survey 

disseminated to over 50 archives, museums, and libraries in the U.S. identified quarter-

inch tapes as the most common format in need of restoration. Exploratory analysis on 

ATR FT-IR data from multiple collections of quarter-inch tapes suggests that predictions 

made in MATSA can only be reliable when the brand of the prediction tapes are known 

and placed into models comprising only tapes with similar formulations. However, 

because manufacturers sometimes change the model number without making significant 

changes to the formulation of the tape, one could suspect that in many instances a single 

classification model could be valuable for multiple tape model numbers.  

ACKNOWLEDGMENTS 

This project was supported by Grant LG-06-12-056912 from the Institute of 

Museum and Library Services to the University of South Carolina. Portions of this work 

were presented at the Great Scientific Exchange (SciX) conference at the Rhode Island 

Convention Center in Providence, Rhode Island on September 29, 2015. In addition, the 

work presented here contributed to a published article in Against the Grain (volume 27, 

number 4) entitled, “Magnetic Tapes, Playable or Not?” The co-authorship of Brianna M. 

Cassidy, Zhenyu Lu, Michael L. Myrick, Eric M. Breitung, and Stephen L. Morgan is 

acknowledged. The authors are grateful for support from Heather M. Heckman, Lydia C. 

Pappas, and Gregory J. Wilsbacher at Moving Image Research Collections at the 

University of South Carolina, and Gene DeAnna, Larry Miller, Fenella France, and 

Linchi Nguyen (Summer 2013, ACS Project SEED research participant) at the Library of 



www.manaraa.com

 

156 
 

Congress. The contributions made by University of South Carolina undergraduate 

researchers, Samantha E. Skelton and Eric J. Bringley are also recognized.



www.manaraa.com

 

157 
 

REFERENCES 

1. Eilers, D. Polyester and Acetate as Magnetic Tape Backings, J. Audio Engng. Soc. 

1969, 17, 303-308. 

 

2. Volkmann, H. Film Preservation: a Report of the Preservation Committee of the 

International Federation of Film Archives, FIAF 1965, 7. 

 

3. Cuddihy, E. Aging of Magnetic Recording Tape, IEEE Trans. Magn. 1980, 16, 558-

568. 

 

4. Bertram, H.; Cuddihy, E. Kinetics of the Humid Aging of Magnetic Recording Tape. 

IEEE Trans. Magn. 1982, 18, 993-999. 

 

5. Edge, M.; Allen, S.; Hayes, M.; Jewitt, T.; Horie, C.; and Brems, K. Degradation of 

Magnetic Tape: Support and Binder Stability, Polym. Degrad. Stabil. 1993, 39, 207-

214. 

 

6. Thiébaut, B.; Vilmont, L-B.; Lavédrine, B. Characterization of U-matic Videotape 

Deterioration by Size Exclusion Chromatography and Pyrolysis Gas 

Chromatography/Mass Spectrometry and the Role of Adipic Acid, J. Cultural 

Heritage 2009, 10, 183-197. 

 

7. Smith, L. Factors Governing the Long-Term Stability of Polyester-Based Recording 

Media, Restaurator 1991, 12, 201-218. 

 

8. Hess R. Tape Degradation Factors and Challenges Predicting Tape Life, J. Assoc. 

Rec. Sound Collect. 2008, 39, 240-274. 

 

9. Richardson C. Process for Restoring Magnetic Recording Tape Damaged by “Sticky 

Shed” Syndrome. United States Patent No. 6797072 B1 (28 Sept. 2004). 

 

10. A Public Trust at Risk: The Heritage Health Index Report on the State of America's 

Collections, Heritage Preservation, Inc., Washington, D.C., 2005. 

 

11. Zelst, L. Sticky Shed Sydrome: Characterization, Diagnosis, and Treatment, Internal 

Library of Congress Report, March, 2008. 

 

12. Hobaica, S. Analysis of Audio Magnetic Tapes with Sticky Shed Syndrome by ATR 

FT-IR, J. Appl. Polym. Sci. 2013, 128, 1962-1973.  

 

13. Cassidy, B.; Lu, Z.; Fuenffinger, N.; Skelton, S.; Bringley, E.; Nguyen, L.; Myrick, 

M.; Breitung, E.; Morgan, S. Rapid and Minimally Invasive Identification of 

Degraded Polyester-Urethane Magnetic Tape Using Attenuated Total Reflection 

Fourier Transform Infrared (ATR FT-IR) Spectroscopy and Multivariate Statistics, 

Anal. Chem. 2015, 87, 9265-9272. 



www.manaraa.com

 

158 
 

 

14. Boor, C. A Practical Guide to Splines; Springer-Verlag: Germany, 1978. 

 

15. Savitzky, A.; Golay, M. Smoothing and Differentiation of Data by Simplified Least 

Squares Procedure, Anal. Chem. 1964, 36, 1627–39. 

 

16. Steiner, J.; Termonia, Y.; Deltour, J. Smoothing and Differentiation of Data by 

Simplified Least Squares Procedure. Anal. Chem. 1972, 44, 1906-1909. 

 

17. Barnes, R.; Dhanoa, M.; Lister, S. Standard Normal Variate Transformation and De-

trending of Near-Infrared Diffuse Reflectance Spectra, Appl. Spectrosc. 1989, 43, 

772-777. 

 

18. Bellman, R. Adaptive Control Processes: A Guided Tour; Princeton University Press: 

New Jersey, 1961. 

 

19. Gemperline, P. Principal Component Analysis. In Practical Guide to Chemometrics, 

2nd ed.; Gemperline, P., Ed.; Taylor & Francis: Florida, 2006. pp 69-104. 

 

20. Joliffe, I. Principal Component Analysis, 2nd ed.; Springer Series in Statistics; 

Springer: New York, 2002. 

 

21. Barker, M.; Rayens, M. Partial Least Squares for Discrimination, J. Chemom. 2003, 

17, 166-173. 

 

22. Kalivas, J.; Gemperline, J. Calibration. In Practical Guide to Chemometrics, 2nd ed.; 

Gemperline, P., Ed.; Taylor & Francis: Florida, 2006, pp 105-162. 

 

23. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data 

Mining, Inference, and Prediction; Springer Series in Statistics; Springer-Verlag: New 

York, 2001. 

 

24. Theodoridis, S.; Koutroumbas, K. Pattern Recognition, 3rd ed.; Academic Press: 

California, 2006. 

 

25. Barber, D. Bayesian Reasoning and Machine Learning; Cambridge University Press: 

Cambridge, U.K., 2012. 

 

26. Kotsiantis, S. Supervised Machine Learning: a Review of Classification Techniques, 

Informatica 2007, 31, 249-268. 

 

27. Mahalanobis, P. On the Generalized Distance in Statistics, Proc. Nat. Instit. Sci. India 

1936, 2, 49-55. 

 

28. De Maesschalck, R.; Jouan-Rimbaud, D.; Massart, D. The Mahalanobis Distance, 

Chemom. Intell. Lab. Syst. 2000, 50, 1-18. 



www.manaraa.com

 

159 
 

29. Kaufman, L.; Rousseeuw, P. Finding Groups in Data: An Introduction to Cluster 

Analysis; Wiley Series in Probability and Mathematical Statistics; Wiley: New York, 

1990, pp 199-252. 

 

30. Jain, A. K.; Dubes, R. C. Algorithms for Clustering Data; Prentice Hall Advanced 

Reference Series; Prentice Hall: New Jersey, 1988, pp 58-89. 

 

31. Ward, J. Hierarchical Grouping to Optimize an Objective Function, J. Amer. Statist. 

Assoc. 1963, 58, 236-244. 

 



www.manaraa.com

 

160 
 

  
 

Figure 5.1 MATSA program title window (left) and main user interface (right). 
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Figure 5.2 MATSA spectral plot window showing examples of magnetic audio tape raw 

absorbance spectra (left) and spectra preprocessed using interpolation, Savitzky-Golay 

smoothing, standard normal variate transform, and mean centering (right).  
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Figure 5.3 MATSA scores (left) and loadings (right) plots resulting from feature 

extraction by principal component analysis.  
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Figure 5.4 MATSA displays of validation accuracy with newly selected algorithms (left) 

and validation results for all algorithms based on the number of input latent variables 

from partial least squares (right).  
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Figure 5.5 MATSA displays showing samples to be predicted in the space of first two 

latent variables with linear boundary separating playable tapes from non-playable tapes 

(left) and playability predictions for each sample in tabular form (right). 
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Figure 5.6 MATSA three-dimensional plots showing decision planes resulting from 

linear discriminant analysis on the principal component scores with an equal cost of 

misclassifying tapes (left) and with a higher cost of falsely classifying non-playable tapes 

as playable (right). 
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Figure 5.7 Dendrogram showing two clusters from hierarchical cluster analysis using 

Ward’s linkage on the average ATR FT-IR absorbance spectra from 41 tapes in an 

assorted collection listed by brand and model number. 
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Figure 5.8 Average spectra of two clusters resulting from hierarchical cluster analysis. 
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